欢迎访问《茶叶科学》,今天是
研究报告

茶树氮吸收效率的早期鉴定技术研究

  • 苏静静 ,
  • 阮丽 ,
  • 王丽鸳 ,
  • 韦康 ,
  • 吴立赟 ,
  • 白培贤 ,
  • 成浩
展开
  • 1.中国农业科学院茶叶研究所/国家茶树改良中心/农业部茶树生物学与资源利用重点实验室,浙江 杭州 310008;
    2.中国农业科学院研究生院,北京 100081
苏静静,女,硕士研究生,主要从事茶树耐贫瘠育种研究。

收稿日期: 2020-01-13

  修回日期: 2020-03-17

  网络出版日期: 2020-10-10

基金资助

中央级科研院所基本科研业务费专项(1610212018004)、浙江省农业(茶树)新品种选育重大科技专项(2016C02053-8)、现代农业产业技术体系建设专项资金资助(CARS-19)

Early Identification of Nitrogen Absorption Efficiency in Tea Plants

  • SU Jingjing ,
  • RUAN Li ,
  • WANG Liyuan ,
  • WEI Kang ,
  • WU Liyun ,
  • BAI Peixian ,
  • CHENG Hao
Expand
  • 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2020-01-13

  Revised date: 2020-03-17

  Online published: 2020-10-10

摘要

氮是植物生长的重要营养元素,在茶树栽培过程中常需施用大量氮肥,不仅消耗大量的资源,施用不当还会造成一系列环境问题。培育氮肥高效利用的茶树品种是解决这一问题的重要途径,而建立快速筛选高效株系的早期鉴定方法对于缩短育种茶树育种年限具有重要意义。本研究分析龙井43(LJ43)和中茶108(ZC108)两个茶树品种在不同氮素水平下对氨态氮和硝态氮的吸收与利用数据,通过与15N同位素标记技术的比对,验证非损伤微测技术(NMT)和实时荧光定量(qRT-PCR)技术在早期鉴定茶树株系氮素吸收利用能力方面的可行性与实用性,以期建立茶树氮吸收效率的室内早期鉴定技术。试验结果表明,15N同位素标记技术的稳定性和可重复性分别为89.51%、99.26%,而NMT的稳定性、可重复性分别为95.22%、96.76%;两种方法测定结果均显示茶树具有明显的喜铵特性;硝酸根转运蛋白基因CsNRT3.2CsNRT2.4在两个品种中均表现出诱导上调表达效应,相比中茶108,龙井43中CsNRT2.4CsNRT3.2具有更高的表达量,表明LJ43对外界氮源的响应高于ZC108。综上所述,认为NMT技术可在短时间内处理并测得茶树的瞬时吸收速率,且试验材料损耗少,可以用于茶树氮瞬时吸收速率的早期鉴定;CsNRT2.4CsNRT3.2的表达量一定程度上反映了茶树对硝态氮吸收的能力。本研究可为氮高效茶树品种的早期鉴定技术建立提供依据。

本文引用格式

苏静静 , 阮丽 , 王丽鸳 , 韦康 , 吴立赟 , 白培贤 , 成浩 . 茶树氮吸收效率的早期鉴定技术研究[J]. 茶叶科学, 2020 , 40(5) : 576 -587 . DOI: 10.13305/j.cnki.jts.2020.05.002

Abstract

Nitrogen is one of the most important elements for tea plants, and it has been over supplied in tea gardens, which not only results in the waste of resources, but also causes a series of environmental problems. Therefore, to breed tea cultivars with high nitrogen efficiency, it is necessary to establish an early detection of nitrogen usage rates which could be developed for screening the strains of tea plants. This study analyzed the absorption and utilization of ammonia nitrogen and nitrate nitrogen in two tea cultivars Longjing 43 (LJ43) and Zhongcha 108 (ZC108) under different nitrogen levels. The 15N isotope labeling technology was applied to verify the feasibility and practicability of non-invasive micro-test technology (NMT) and real-time fluorescence quantitative (qRT-PCR) technology in early identification of nitrogen absorption and utilization abilities of tea lines. The purpose of this study was to establish an indoor early identification technology of nitrogen absorption efficiency for tea plants. The results show that the accuracy, stability and repeatability of 15N were 85.16%, 89.51% and 99.26% respectively. While the accuracy, stability and repeatability of NMT were 91.35%, 95.22% and 96.76% respectively. The two methods showed that tea plants had obvious ammonium preference. Moreover, the expressions of nitrate transporter genes CsNRT3.2 and CsNRT2.4 were up-regulated by nitrogen in both cultivars. Compared with ZC108, the expressions of CsNRT2.4 and CsNRT3.2 in LJ43 were higher, indicating that the response of LJ43 to external nitrogen applications was higher than that of ZC108. Finally, it was preliminarily summarized that the NMT technology could measure the instantaneous absorption rate of tea plants in a short time with little loss of experimental materials. It might also be applied for the early detection of the instantaneous nitrogen absorption rates of tea plants. Meanwhile, the results also show that the expressions of CsNRT2.4 and CsNRT3.2 could partly reflect the nitrogen absorption ability of tea plants. This study provided a basis to develop techniques in early identification of high nitrogen-efficient cultivars in tea plants.

参考文献

[1] Raven J A, Handley L L, Andrews M.Global aspects of C/N interactions determining plant-environment interactions[J]. Journal of Experimental Botany, 2004, 55(394): 11-26.
[2] 欧立军, 康林玉, 赵激, 等. 作物氮素吸收与利用研究进展[J]. 北方园艺, 2018, 7: 151-156.
Ou L J, Kang L Y, Zhao J, et al.Research progress in nitrogen uptake and utilization of crops[J]. Northern Horticulture, 2018, 7: 151-156.
[3] Singh B, Singh Y, Sekhon G S.Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries[J]. Journal of Contaminant Hydrology, 1995, 20: 167-184.
[4] 马立锋, 陈红金, 单英杰, 等. 浙江省绿茶主产区茶园施肥现状及建议[J]. 茶叶科学, 2013, 33(1): 74-84.
Ma L F, Cheng H J, Shan Y J, et al.Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhejiang Province[J]. Journal of Tea Science, 2013, 33(1): 74-84.
[5] 韩文炎, 李鑫, 颜鹏, 等. 生态茶园的概念与关键建设技术[J]. 中国茶叶, 2018, 40(1): 10-14.
Han W Y, Li X, Yan P, et al.Concept and key construction technology of ecological tea garden[J]. China Tea, 2018, 40(1): 10-14.
[6] 阮建云. 中国茶树栽培40年[J]. 中国茶叶, 2019, 41(7): 1-11, 42.
Ruan J Y.40 years of tea cultivation in China[J]. China Tea, 2019, 47(7): 1-11, 42.
[7] 严小龙, 张福锁. 植物营养遗传学[M]. 北京: 中国农业出版社, 1997: 22-32.
Yan X L, Zhang F S.Plant nutrition genetics [M]. Beijing: China Agricultural Press, 1997: 22-32.
[8] 李祥剑. 不同小麦品种氮素(肥)效率差异、评价及分类[D]. 郑州: 河南农业大学, 2010.
Li X J.Difference, Evaluation and classification of nitrogen (fertilizer) efficiency in different wheat varieties [D]. Zhengzhou: Henan Agricultural University, 2010.
[9] 李淑文, 文宏达, 周彦珍, 等. 不同氮效率小麦品种氮素吸收和物质生产特性[J]. 中国农业科学, 2006, 39(10): 1992-2000.
Li S W, Wen H D, Zhou Y Z.Characterization of nitrogen uptake and dry matter production in wheat varieties with different N efficiency[J]. Scientia Agricultura Sinica, 2016, 39(10): 1992-2000.
[10] 韩胜芳, 李淑文, 吴立强, 等. 不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J]. 应用生态学报, 2007, 18(4): 807-812.
Han S F, Li S W, Wu L Q, et al.Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen efficiency and nitrogen uptake to nitrogen supply[J]. Chinese Journal of Applied Ecology, 2017, 18(4): 807-812.
[11] Scharf P C, Kitchen N R, Sudduth K A, et al.Spatially variable corn yield is a weak predictor of optimal nitrogen rate[J]. Soil Science Society of America Journal, 2007, 70(6): 2154-2160.
[12] Li H C, Li L, Thilo W, et al.Effect of N supply on stalk quality in maize hybrids[J]. Field Crops Research, 2010, 118: 208-214.
[13] 申丽霞, 王璞. 不同基因型玉米氮素吸收利用效率研究进展[J]. 玉米科学, 2016, 24(1): 50-55.
Shen L X, Wang P.Research progress of nitrogen absorption and utilization efficiency of different maize genotypes[J]. Journal of Maize Sciences, 2016, 24(1): 50-55.
[14] Jiang L G, Cao W X.Physiological mechanism and approaches for efficient nitrogen utilization in rice[J]. Chinese Journal of Rice Science, 2002, 16(3): 261-266.
[15] 张晓果, 王丹英, 计成林, 等. 水稻氮素吸收利用研究进展[J]. 中国稻米, 2015, 21(5): 13-19.
Zhang X G, Wang D Y, Ji C L, et al.Nitrogen absorption and utilization on rice[J]. China Rice, 2015, 21(5): 13-19.
[16] 杨丽萍, 陈永川, 许木果, 等. 不同供氮水平不同供氮水平橡胶树幼苗氮素利用及来源特征[J]. 广东农业科学, 2017, 44(11): 75-79.
Yang L P, Chen Y C, Xu M G, et al.Characteristics of nitrogen utilization and source of Hevea brasiliensis under different nitrogen levels[J]. Guangdong Agricultural Sciences, 2017, 44(11): 75-79.
[17] 梁景霞, 梁康迳, 祁建民, 等.烟草不同基因型耐低氮能力差异评价[J]. 植物遗传资源学报, 2007, 8(4): 451-455.
Liang J X, Liang K J, Qi J M, et al.Evaluation of low nitrogen tolerance for different tobacco varieties[J]. Journal of Plant Genetic Resources, 2007, 8(4): 451-455.
[18] 刘圆. 不同氮效率茶树品种氮素吸收利用相关基因表达模式探究[D]. 北京: 中国农业科学院, 2016.
Liu Y.Study on the gene expression patterns of nitrogen uptake and utilization in tea plants with different nitrogen efficiency [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[19] 王新超, 杨亚军, 陈亮, 等. 茶树氮素利用效率相关生理生化指标初探[J]. 作物学报, 2005, 31(7): 926-931.
Wang X C, Yang Y J, Chen L, et al.Preliminary study on physiological and biochemical indices related to nitrogen use efficiency in tea plant[J]. Acta Agronomica Sinica, 2005, 31(7): 926-931.
[20] 李建辉. 施氮对寒地水稻15N吸收、利用及氮代谢的影响[D]. 大庆: 黑龙江八一农垦大学, 2015.
Li J H.Effects of nitrogen application on 15N absorption, utilization and nitrogen metabolism in cold rice [D]. Daqing: Heilongjiang August First Land Reclamation University, 2015.
[21] 刘炳寰. 质谱学方法与同位素分析[M]. 北京: 科学出版社, 1983: 179-183.
Liu B H.Mass spectroscopy and isotope analysis [M]. Beijing: Science Press, 1983: 179-183.
[22] 周碧青, 陈成榕, 杨文浩, 等. 茶树对可溶性有机和无机态氮的吸收与运转特性[J]. 植物营养与肥料学报, 2017, 23(1): 189-195.
Zhou B Q, Chen C R, Yang W H, et al.Uptake and transport characteristics of soluble organic and inorganic nitrogen by tea plant[J]. Plant Nutrition and Fertilizer Science, 2017, 23(1): 189-195.
[23] 王新超, 杨亚军, 陈亮, 等. 利用15N标记研究不同品种茶树氮肥利用率差异[J]. 福建茶叶, 2005(1): 4-5.
Wang X C, Yang Y J, Chen L, et al.Studies on N fertilizer-utilizing efficiency of different tea varieties by using 15N-tracing method[J]. Tea in Fujian, 2005(1): 4-5.
[24] Ruan L, Wei K, Wang L Y, et al.Characteristics of NH4+ and NO3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique[J]. Scientific Reports, 2016, 6(1): 38370. doi: 10.1038/srep38370.
[25] Li P Y, Guan Y S, Yu X.Application of scanning ion-selective electrode technique in study of higher plant[J]. Progress in Natural Science, 2006, 16(3): 262-266.
[26] 丁亚男, 许越. 非损伤微测技术及其在生物医学研究中的应用[J]. 物理, 2007, 36(7): 548-558.
Ding Y N, Xu Y.Non-invasive micro-test technology and its applications in biology and medicine[J]. Physics, 2007, 36(7): 548-558.
[27] Xu G H, Fan X, Miller A J.Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 152-182.
[28] 孙美莲. 茶儿茶素生物合成相关基因表达的实时荧光定量PCR分析[D]. 合肥: 安徽农业大学, 2010.
Sun M L.Real-time quantitative PCR analysis of gene expression related to tea catechin biosynthesis [D]. Hefei: Anhui Agricultural University, 2010.
[29] Ransbotyn V, Reusch T B H. Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress[J]. Limnology and Oceanography, Methods, 2006, 4(10): 367-373.
[30] 张珣. 六种植物病毒Real Time PCR定量方法的建立及其应用[D]. 北京: 农业科学院, 2008.
Zhang X.Development and application of Real Time PCR approach for quantification of six plant virus [D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
[31] 王新超. 不同品种茶树氮素营养差异及其机制的研究[D]. 北京: 中国农业科学院, 2003.
Wang X C.Study on the difference of nitrogen nutrition and its mechanism in different tea trees [D]. Beijing: Chinese Academy of Agricultural Sciences, 2003.
[32] 杨亚军, 杨素娟, 杨跃华, 等. 早生优质适制名优绿茶新品种-中茶108选育研究[J]. 中国茶叶, 2003, 25(2): 12-14.
Yang Y J, Yang S J, Yang Y H, et al.Investigation on the breeding of new tea cultivar, Zhongcha 108, with early-sprouting, superior-quality and suitable for manufacturing high-quality green tea[J]. China Tea, 2003, 25(2): 12-14.
[33] Ruan J Y, Gerendas J, Hardter R, et al.Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2006, 99(2): 301-310.
[34] Zhang F, Liu Y, Wang L Y, et al.Molecular cloning and expression analysis of ammonium transporters in tea plants (Camellia sinensis (L.) O. Kuntze) under different nitrogen treatments[J]. Gene, 2018, 658: 136-145.
[35] 杨亦扬. 氮素对茶树叶片品质成分影响机理研究[D]. 南京: 南京农业大学, 2011.
Yang Y Y.Study on the effect mechanism of nitrogen on the quality components of tea leaves [D]. Nanjing: Nanjing Agricultural University, 2011.
[36] Epstein E, Hagen C.A kinetic study of the absorption of alkali cations by barley roots[J]. Plant Physiology, 1952, 27(3): 457-474.
[37] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389-395.
[38] Francis D D, Schepers J S, Vigil M F.Post-anthesis nitrogen loss from corn[J]. Agronomy Journal, 1993, 85(3): 659-663.
[39] Morgan J A, Parton W J.Characteristics of ammonia volatilization from spring wheat[J]. Crop Science, 1989, 29(3): 726-731.
[40] 张亚丽, 董园园, 沈其荣, 等. 不同水稻品种对铵态氮和硝态氮吸收特性的研究[J]. 土壤学报, 2004(6): 918-923.
Zhang Y L, Dong Y Y, Shen Q R, et al.Characteristics of NH4+ and NO3- uptake by rices of different genotypes[J]. Acta Pedologica Sinica, 2004(6): 918-923.
[41] 邹春琴, 王晓凤, 张福锁. 铵态氮抑制向日葵生长的作用机制初步探讨[J]. 植物营养与肥料学报, 2004(1): 82-85.
Zhou C Q, Wang X F, Zhang F S.Preliminary study on the mechanism of ammonium nitrogen inhibiting the growth of sunflower[J]. Plant Nutrition and Fertilizer Science, 2004(1): 82-85.
[42] 杜旭华, 彭方仁. 无机氮素形态对茶树氮素吸收动力学特性及个体生长的影响[J]. 作物学报, 2010, 36(2): 327-334.
Du X H, Peng F R.Effect of inorganic nitrogen forms on growth and kinetics of ammonium and nitrate uptake in Camellia sinensis L.[J]. Acta Agronomica Sinica, 2010, 36(2): 327-334.
[43] 汤丹丹, 刘美雅, 张群峰, 等. 不同氮素形态、pH对茶树元素吸收及有机酸含量影响[J]. 茶叶科学, 2019, 39(2): 159-170.
Tang D D, Liu M Y, Zhang Q F, et al.Effects of nitrogen form and root-zone pH on nutrient uptake and concentrations of organic anions in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2019, 39(2): 159-170.
[44] Zhang F, Wang Y L, Bai P X, et al.Identification of regulatory networks and hub genes controlling nitrogen uptake in tea plants (Camellia sinensis (L.) O. Kuntze)[J]. Journal of Agricultural and Food Chemistry, 2020, 68: 2445-2456.
[45] 刘鹏, 焦晓燕, 丁玉川, 等. 作物氮素高效利用研究进展[J]. 山西农业科学, 2017, 45(5): 855-860.
Liu P, Jiao X Y, Ding Y C, et al.Research advances on improving nitrogen use efficiency for crop production[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(5): 855-860.
[46] 尹浩冰, 马红媛, 梁正伟. 15N稳定同位素标记技术在草地生态系统氮循环中的研究进展[J]. 土壤与作物, 2014, 3(1): 15-21.
Yi H B, Ma H Y, Liang Z W.Review of stable isotope technique in grassland nitrogen cycling study[J]. Soil and Crop, 2014, 3(1): 15-21.
文章导航

/