为研究不同水分条件下丛枝菌根(Arbuscular mycorrhizal,AM)真菌对茶树生长和茶叶品质的影响,试验以福鼎大白茶(Fuding Dabaicha)为材料,采用温室盆栽法,分别设置正常水分(WW)和干旱胁迫(DS)两个水分条件,研究单接种AM真菌幼套近明球囊霉(Clariodeoglous etunicatum)(+AMF)与不接种(-AMF)处理对福鼎大白茶实生苗叶片数、生物量等生长指标和蔗糖、果糖、儿茶素、氨基酸等品质指标的影响。结果显示,无论水分条件如何,接种AM真菌处理均显著促进了福鼎大白茶实生苗生长,增加了叶片数量和各部分(叶片、茎、根系)生物量,并提高了茶叶品质;与不接种AM真菌(-AMF)相比,茶树叶片蔗糖、葡萄糖、果糖、儿茶素、氨基酸和茶多酚的含量分别增加了7.73%~21.92%、28.49%~53.44%、6.13%~9.59%、18.97%~23.48%、31.29%~39.11%和6.77%~26.32%。接种AM真菌处理在干旱(DS)条件下效果更为显著,干旱抑制了AM真菌对茶苗根系的侵染和茶苗生长,降低了茶叶品质。接种AM真菌能显著缓解这种抑制效应,同时促进茶叶有机物质积累。此外,接种AM真菌还显著上调了干旱胁迫(DS)下茶树叶片谷氨酰胺脱氢酶基因(CsGDH)、谷氨酰胺α-酮戊二酸氨基转移酶基因(CsGOGAT)和3-羟基-3-甲基戊二酰辅酶A还原酶基因(CsHGMR)的表达。研究结果表明,接种AM真菌在不同水分条件,特别是干旱(DS)条件下,可通过显著上调相关基因的表达来促进茶树的生长,改善茶叶品质。
In order to evaluate the effect of an arbuscular mycorrhizal (AM) fungi on the plant growth performance and tea quality of FudingDabaicha under different water conditions, Fuding Dabaicha seedlings inoculated with (+AMF) or without AMF (-AMF) Clariodeoglous etunicatum were evaluated in a pot experiment under drought (DS) and well-watered (WW) conditions. Plant growth performance and quality parameter such as leaf number, biomass, contents of sucrose, fructose, catechuic acid, amino acid, etc. were determined. The results showed that under WW and DS conditions, AMF inoculation markedly promoted plant growth and improved the tea quality, in particularly increased leaf numbers, biomass of each part (leaf, stem and root), and the contents of sucrose, glucose, fructose, catechuic acid, amino acids and tea polyphenols were significantly increased by 7.73%-21.92%, 28.49%-53.44%, 6.13%-9.59%, 18.97%-23.48%. 31.29%-39.11% and 6.77%-26.32% in Fuding Dabaicha seedlings compared with non-AMF seedlings, especially under drought stress condition. Meanwhile, drought stress (DS) significantly restrained root AM colonization and the plant growth of Fuding Dabaicha seedlings, and markedly decreased the quality of FudingDabaicha seedlings, whereas, AMF inoculation significantly relieved this inhibitory effect, promoted the accumulation of tea organic matters. In addition, AMF-colonized seedlings presented higher expressions of glutamate dehydrogenase gene (CsGDH), glutamine oxoglutarate aminotransferase gene (CsGOGAT) and 3-hydroxy-3-methylglutaryl coenzyme gene (CsHMGR) under drought stress condition. The results indicated that AMF inoculation could promote plant growth and improve tea quality by means of up-regulation of relevant gene expression in Fuding Dabaicha seedlings under different water conditions, especially under drought stress.
[1] 徐亚婷. 水分胁迫下茶树抗性机理的研究[D]. 南京: 南京农业大学, 2016.
Xu Y T.The study on resistance to water stress in tea plant (Camellis sinensis) [D]. Nanjing: Nanjing Agriculture University, 2016.
[2] Kahneh E, RamezanPour H, Tanha M R H, et al. Effect of arbuscular mycorrhizal fungi and phosphorus supplement on leaf P, Zn, Cu and Fe concentrations of tea seedlings[J]. Caspian Journal of Environmental Sciences, 2006, 4(1): 53-58.
[3] Kerio L C, Wachira F N, Wanyoko J K, et al.Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars[J]. Food Chemistry, 2013, 136(3/4): 1405-1413.
[4] 卢健, 朱全武, 骆耀平. 茶园旱热害及其防治与补救措施[J]. 茶叶, 2013, 39(3): 153-155.
Lu J, Zhu Q W, Luo Y P.Tea plant damages induced by high temperature and drought and their control[J]. Journal of Tea, 2013, 39(3): 153-155.
[5] 张小琴, 周富裕, 梁远发. 茶园防旱御旱措施概述[J]. 贵州茶叶, 2012, 40(4): 7-10.
Zhang X Q, Zhou F Y, Liang Y F.Review on the measures of drought prevention and drought resistance in the tea garden[J]. Guizhou Tea, 2012, 40(4): 7-10.
[6] Zhang Y C, Liu C Y, Wu Q S.Mycorrhiza and common mycorrhizal network regulate the production of signal substances in trifoliate orange (Poncirus trifoliata)[J]. Notulae Botanici Hortic Agrobiology, 2017, 45(1): 43-49.
[7] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology & Fertility of Soils, 2008, 44: 491-500.
[8] 赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2): 164-170.
Zhao Q H, Sun L T, Wang Y, et al.Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis (L.) O. Kuntze[J]. Plant Physiology Journal, 2014, 50(2): 164-170.
[9] 柳洁, 肖斌, 王丽霞, 等. 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响[J]. 茶叶科学, 2013, 33(2): 140-146.
Liu J, Xiao B, Wang L X, et al.Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146.
[10] 郭春芳, 孙云, 张木清. 不同土壤水分对茶树光合作用与水分利用效率的影响[J]. 福建林学院学报, 2008, 28(4): 333-337.
Guo C F, Sun Y, Zhang M Q.Photosynthetic characteristics and water use efficiency of tea plant under different soil moisture condition[J]. Journal of Fujian College of Forestry, 2008, 28(4): 333-337.
[11] Wu Q S, Peng Y H, Zou Y N, et al.Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings[J]. ScienceAsia, 2010, 36: 254-258.
[12] 张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009: 35-45.
Zhang Z Z.Experimental course of tea Biochemistry (First Edition) [M]. Beijing: China Agricultural Press, 2009: 35-45.
[13] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method[J]. Methods, 2001, 25: 402-408.
[14] He J D, Li J L, Wu Q S.Effects of Rhizoglomus intraradices on plant growth and root endogenous hormones of trifoliate orange under salt stress[J]. Journal of Animal and Plant Sciences, 2019, 29(1): 245-250
[15] 杨雅婷, 张妮娜, 张飞, 等. 菌根真菌与接种时期对梨幼苗生长的影响[J]. 果树学报, 2016, 33(S1): 114-120.
Yang Y T, Zhang N N, Zhang F, et al.Effect of AMF strains and time of inoculating on root growth and development of Pyrus pashia seedlings[J]. Journal of Fruit Science, 2016, 33(s1): 114-120.
[16] Shao Y D, Zhang D J, Hu X C, et al.Arbuscular mycorrhiza improves leaf food quality of tea plants[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(3): 608-614.
[17] Singh S, Pandey A, Kumar B, et al.Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil[J]. Biology and Fertility of Soils, 2010, 46(5): 427-433.
[18] 林郑和, 钟秋生, 陈常颂. 茶树叶片GDH、GS、GOGAT基因的克隆及荧光定量PCR分析[J]. 茶叶科学, 2012, 32(6): 523-529.
Lin Z H, Zhong Q S, Chen C S.Molecular cloning and quantitative analysis of GDH, GS and GOGAT genes from leave of tea plant[J]. Journal of Tea Science, 2012, 32(6): 523-529.
[19] Jacob P T, Ana C, Concepción A A, et al.Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots[J]. Plant Physiology and Biochemistry, 2014, 75: 1-8.
[20] Bernard S M, Habash D Z.The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling[J]. New Phytologist, 2009, 182(3): 608-620.
[21] Yamaya T, Kusano M.Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice[J]. Journal of Experimental Botany, 2014, 65(19): 5519-5525.
[22] Goodall A J, Kumar P, Tobin A K.Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.)[J]. Plant Cell Physiology, 2013, 54: 492-505.
[23] 褚蔚, 刘洋洋, 李永波, 等. 植物3-羟基-3-甲基戊二酰辅酶A还原酶基因研究进展[J]. 生物技术进展, 2018, 8(2): 93-102.
Chu W, Liu Y Y, Li Y B, et al.Advances on plant 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGR) genes[J]. Current Biotechnology, 2018, 8(2): 93-102.