以76份有代表性的小种红茶为研究对象,采用现行国标方法测定的茶多酚和咖啡碱含量作为近红外预测模型的化学值,对应采集样品的近红外光谱值,分别建立小种红茶茶多酚和咖啡碱含量最佳偏最小二乘法(Partial least squares,PLS)模型。结果表明,所构建的茶多酚含量模型校正集决定系数(Coefficient of determination,R2)为97.59%,校正均方差(Root mean square error of calibration,RMSEC)为0.566%,验证集R2为95.06%,预测均方差(Root mean square error of prediction,RMSEP)为0.855%;咖啡碱含量模型校正集R2为96.98%,RESEC为0.110%,验证集R2为95.67%,RESEP为0.148%。茶多酚和咖啡碱含量定量分析模型效果均较好,可实现对小种红茶茶多酚和咖啡碱含量的快速检测。
[1] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 39, 191.
Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003: 39, 191.
[2] 田翔, 刘思辰, 王海岗, 等. 近红外漫反射光谱法快速检测谷子蛋白质和淀粉含量[J]. 食品科学, 2017, 38(16): 140-144.
Tian X, Liu S C, Wang H G, et al.Application of near infrared diffuse reflectance spectroscopy in rapid detection of crude protein and starch in foxtail millet[J]. Food Science, 2017, 38(16): 140-144.
[3] Wu Y H, Zheng Y, Du Y P, et al.Study on difference between epidermis, phloem and xylem of radix Ginseng with near-infrared and infrared spectroscopy coupled with principal component analysis[J]. Vibrational Spectroscopy, 2011, 50(2): 201-206.
[4] 王怡淼, 朱金林, 张慧, 等. 基于MC-UVE、GA算法及因子分析对葡萄酒酒精度近红外定量模型的优化研究[J]. 发光学报, 2018, 39(9): 1310-1316.
Wang Y M, Zhu J L, Zhang H, et al.Optimization of near infrared quantitative model for wine alcohol content based on MC-UVE,GA algorithm and factor analysis[J]. Chinese Journal of Luminescence, 2018, 39(9): 1310-1316.
[5] Jiang H, Chen Q.Chemometric models for the quantitative descriptive sensory properties of green tea (Camellia sinensis, L. ) using fourier transform near infrared ( FT-NIR) spectroscopy[J]. Food Anal Method, 2015, 8(4): 954-962.
[6] Ouyang Q, Liu Y, Chen Q, et al.Intelligent evaluation of color sensory quality of black tea by visible-near infrared spectroscopy technology: a comparison of spectra and color data information[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 180: 91-96.
[7] Meng W J, Xu X N, Cheng K K, et al.Geographical origin discrimination of Oolong tea (TieGuanYin, Camellia sinensis, (L.) O. Kuntze) using proton nuclear magnetic resonance spectroscopy and near-infrared spectroscopy[J]. Food Analytical Methods, 2017, 10(11): 3508-3522.
[8] Dong C W, Li J, Wang J J, et al.Rapid determination by near infrared spectroscopy of theaflavins-to-thearubigins ratio during Congou black tea fermentation process[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 205: 227-234.
[9] Li X L, Jin J J, Sun C J, et al.Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy[J]. Food Chemistry, 2019, 270: 236-242.
[10] Jin G, Wang Y J, Li L Q, et al.Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy[J]. LWT-Food Science and Technology, 2020, 125: 109216. doi: 10.1016/j.lwt.2020.109216.
[11] 全国茶叶标准化技术委员会. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2018 [S]. 北京: 中国标准出版社, 2018.
National Technical Committee 339 on Tea of Standardization Administration of China. Determination of total polyphenols and catechins content in tea: GB/T 8313—2018 [S]. Beijing: China Standard Press, 2018.
[12] 全国茶叶标准化技术委员会. 茶咖啡碱测定: GB/T 8312—2013 [S]. 北京: 中国标准出版社, 2013.
National Technical Committee 339 on Tea of Standardization Administration of China. Tea-determination of caffeine content: GB/T 8312—2013 [S]. Beijing: China Standard Press, 2013.
[13] 王海霞, 林萍, 周文婷, 等. 广金钱草浸出物的近红外光谱法测定[J]. 中国医药工业杂志, 2014, 45(8): 779-781.
Wang H X, Lin P, Zhou W T, et al.Determination of extracts content in desmodium styracifolium by near-infrared spectroscopy[J]. Chinese Journal of Pharmaceuticals, 2014, 45(8): 779-781.
[14] 李姝寰. 基于NIR和HSI技术的祁门工夫红茶数字化拼配研究[D]. 合肥: 安徽农业大学, 2018: 16.
Li S H.Study on the digital tea blending tea of Keemun Gongfu black tea based on NIR and HSI technology [D]. Hefei: Anhui Agricultural University, 2018: 16.
[15] 李水芳, 单杨, 朱向荣, 等. 近红外光谱结合化学计量学方法检测蜂蜜产地[J]. 农业工程学报, 2011, 27(8): 350-354.
Li S F, Shan Y, Zhu X R, et al.Detection of geographical origin of honey using near-infrared spectroscopy and chemometrics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 350-354.
[16] 范睿, 孙晓凯, 周欣, 等. 基于近红外光谱定量分析花生牛奶可行性[J]. 食品科学, 2017, 38(24): 189-195.
Fan R, Sun X K, Zhou X, et al.Feasibility of quantitative analysis of peanut milk based on near infrared spectroscopy[J]. Food Science, 2017, 38(24): 189-195.
[17] Li X L, Sun C J, Luo L B, et al.Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques[J]. Computers and Electronics in Agriculture, 2015, 112: 28-35.
[18] 赵峰, 林河通, 杨江帆, 等. 基于近红外光谱的武夷岩茶品质成分在线检测[J]. 农业工程学报, 2014, 30(2): 269-277.
Zhao F, Lin H T, Yang J F, et al.Online quantitative determination of Wuyi Rock Tea quality compounds by near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 269-277.
[19] 周小芬. 基于近红外的大佛龙井茶品质评价研究[D]. 北京: 中国农业科学院, 2012: 47-49.
Zhou X F.Study on quality evaluation of Dafo longjing tea based on near infrared spectroscopy [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012: 47-49.
[20] 王玉霞, 徐荣荣, 任广鑫, 等. 绿茶茶汤中主要品质成分近红外定量分析模型的建立[J]. 茶叶科学, 2011, 31(4): 355-361.
Wang Y X, Xu R R, Ren G X, et al.Establishment of the predictive models for quantitative analysis of major components in green tea infusion by near infrared spectroscopy (NIRS)[J]. Journal of Tea Science, 2011, 31(4): 355-361.
[21] 陈美丽, 张俊, 龚淑英, 等. 茉莉花茶主要品质成分定量近红外光谱分析模型的建立[J]. 茶叶科学, 2013, 33(1): 21-26.
Chen M L, Zhang J, Gong S Y, et al.Establishment of predictive model for quantitative analysis of major components in jasmine tea by near infrared spectroscopy (NIRS)[J]. Journal of Tea Science, 2013, 33(1): 21-26.