欢迎访问《茶叶科学》,今天是
综述

近红外光谱技术在茶叶品控与装备创制领域的研究进展

  • 任广鑫 ,
  • 金珊珊 ,
  • 李露青 ,
  • 宁井铭 ,
  • 张正竹
展开
  • 安徽农业大学茶树生物学与资源利用国家重点实验室,安徽 合肥 230036
任广鑫,男,博士研究生,主要从事茶叶加工与无损检测技术研究,rgx@ahau.edu.cn。

收稿日期: 2020-06-10

  修回日期: 2020-06-21

  网络出版日期: 2020-12-10

基金资助

国家重点研发计划项目(2017YFD0400800)

Research Progress of Near-infrared Spectroscopy in Tea Quality Control and Equipment Development

  • REN Guangxin ,
  • JIN Shanshan ,
  • LI Luqing ,
  • NING Jingming ,
  • ZHANG Zhengzhu
Expand
  • State Key Laboratory of Tea Plant Biology and Utilization. Anhui Agricultural University, Hefei 230036, China

Received date: 2020-06-10

  Revised date: 2020-06-21

  Online published: 2020-12-10

摘要

茶叶是中国特色的经济作物和高附加值的天然饮品,快速、准确的营养诊断和品质监控是保证茶叶制品质量的必然要求。本文分析了传统茶叶质量评价方法和近年来涌现出的快速检测技术的局限性,介绍了近红外光谱技术的特性和该技术应用于茶叶领域的研究论文关键词的演变过程,详细评述了该技术在茶制品关键组分快速检测、茶制品质量控制、数字化光谱快速分析仪创制和技术标准开发中的研究进展,并对该技术在茶叶分析中的发展方向进行了展望。

本文引用格式

任广鑫 , 金珊珊 , 李露青 , 宁井铭 , 张正竹 . 近红外光谱技术在茶叶品控与装备创制领域的研究进展[J]. 茶叶科学, 2020 , 40(6) : 707 -714 . DOI: 10.13305/j.cnki.jts.2020.06.001

Abstract

Tea is an economic crop with Chinese characteristics and a high value-added natural beverage. Rapid and accurate nutrition diagnosis and quality monitoring are inevitable requirements for ensuring the quality of tea products. The limitations of traditional tea quality assessment methods and recent emerging rapid detection techniques were revealed in this study. The characteristics of near-infrared spectroscopy (NIRS) technology and the evolution of keywords from the published studies on the application of the NIRS method in the field of tea were presented. The research progress on the rapid detection of key components of tea products, the quality control of tea products, the development of the digital fast NIRS analyzer, and the development of technical standards were reviewed in detail. The development directions of the NIRS technology in the field of tea analysis were proposed and discussed.

参考文献

[1] Ren G X, Fan Q Y, He X, et al.Applicability of multifunctional preprocessing device for simultaneous estimation of spreading of green tea, withering of black tea and shaking of Oolong tea[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 560-569.
[2] 梅宇, 梁晓. 2019年中国茶叶产销形势报告[J]. 茶世界, 2020(增刊1): 1-14.
Mei Y, Liang X.2019 Chinese tea production and marketing situation report[J]. Tea World, 2020(s1): 1-14.
[3] Ren G X, Wang S P, Ning J M, et al.Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS)[J]. Food Research International, 2013, 53(2): 822-826.
[4] Zareef M, Chen Q, Ouyang Q, et al.Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms[J]. Analytical Methods, 2018, 10(25): 3023-3031.
[5] Guo Z M, Barimah A O, Shujat A, et al.Simultaneous quantification of active constituents and antioxidant capability of green tea using NIR spectroscopy coupled with swarm intelligence algorithm[J]. LWT-Food Science and Technology, 2020, 129: 109510. doi: 10.1016/j.lwt.2020.109510.
[6] Fang S M, Ning J M, Huang W J, et al.Identification of geographical origin of Keemun black tea based on its volatile composition coupled with multivariate statistical analyses[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4344-4352.
[7] Xu S S, Wang J J, Wei Y M, et al.Metabolomics based on UHPLC-Orbitrap-MS and global natural product social molecular networking reveals effects of time scale and environment of storage on the metabolites and taste quality of raw Pu-erh tea[J]. Journal of Agricultural and Food Chemistry, 2019, 67(43): 12084-12093.
[8] Xu J T, Wang M, Zhao J P, et al.Yellow tea (Camellia sinensis L.), a promising Chinese tea: processing, chemical constituents and health benefits[J]. Food Research International, 2018, 107: 567-577.
[9] Ren G X, Ning J M, Zhang Z Z.Intelligent assessment of tea quality employing visible-near infrared spectra combined with a hybrid variable selection strategy[J]. Microchemical Journal, 2020, 157: 105085. doi: 10.1016/j.microc.2020.105085.
[10] Jiang H, Wang W, Mei C, et al.Rapid diagnosis of normal and abnormal conditions in solid-state fermentation of bioethanol using fourier transform near-infrared spectroscopy[J]. Energy & Fuels, 2017, 31(11): 12959-12964.
[11] Jiang H, Xu W D, Chen Q S.Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis[J]. Food Chemistry, 2020, 319: 126584. doi: 10.1016/j.foodchem.2020.126584.
[12] Ouyang Q, Zhao J, Chen Q.Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 151: 280-285.
[13] 张正竹, 廖步岩, 阎守和, 等. 近红外光谱(NIRS)技术在茶叶品质保真中的应用前景[J]. 食品工业科技, 2009, 30(9): 349-352.
Zhang Z Z, Liao B Y, Yan S H, et al.Application prospect of near infrared spectroscopic techniques on the fidelity evaluation of tea quality[J]. Science and Technology of Food Industry, 2009, 30(9): 349-352.
[14] Wang Y J, Jin G, Li L Q, et al.NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves[J]. Infrared Physics & Technology, 2020, 108: 103365. doi: 10.1016/j.infrared.2020.103365.
[15] 王胜鹏, 宛晓春, 林茂先, 等. 基于水分、全氮量和粗纤维含量的茶鲜叶原料质量近红外评价方法[J]. 茶叶科学, 2011, 31(1): 66-71.
Wang S P, Wan X C, Lin M X, et al.Estimating the quality of tea leaf materials based on contents of moisture, total nitrogen and crude fiber by NIR-PLS techniques[J]. Journal of Tea Science, 2011, 31(1): 66-71.
[16] Wang Y J, Hu X, Jin G, et al.Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1997-2004.
[17] Wang Y J, Li T H, Jin G, et al.Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics[J]. Journal of the Science of Food and Agriculture, 2020, 100(1): 161-167.
[18] Wang J J, Zareef M, He P H, et al.Evaluation of matcha tea quality index using portable NIR spectroscopy coupled with chemometric algorithms[J]. Journal of the Science of Food and Agriculture, 2019, 99(11): 5019-5027.
[19] Liu P, Wen Y P, Huang J S, et al.A novel strategy of near-infrared spectroscopy dimensionality reduction for discrimination of grades, varieties and origins of green tea[J]. Vibrational Spectroscopy, 2019, 105: 102984-102991.
[20] Firmani P, De Luca S, Bucci R, et al.Near infrared (NIR) spectroscopy-based classification for the authentication of Darjeeling black tea[J]. Food Control, 2019, 100: 292-299.
[21] Li L Q, Wei L D, Ning J M, et al.Detection and quantification of sugar and glucose syrup in roasted green tea using near infrared spectroscopy[J]. Journal of Near Infrared Spectroscopy, 2015, 23: 317-325.
[22] 董春旺, 梁高震, 安霆, 等. 红茶感官品质及成分近红外光谱快速检测模型建立[J]. 农业工程学报, 2018, 34(24): 306-313.
Dong C W, Liang G Z, An T, et al.Near-infrared spectroscopy detection model for sensoryquality and chemical constituents of black tea[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 306-313.
[23] Dong C W, Li J, Wang J J, et al.Rapid determination by near infrared spectroscopy of theaflavins-to-thearubigins ratio during Congou black tea fermentation process[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 205: 227-234.
[24] Jin G, Wang Y J, Li L Q, et al.Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy[J]. LWT-Food Science and Technology, 2020, 125: 109216. doi: 10.1016/j.lwt.2020.109216.
[25] 陈琳, 董春旺, 高明珠, 等. 基于近红外光谱的红茶干燥中含水率无损检测方法[J]. 茶叶科学, 2016, 36(2): 184-190.
Chen L, Dong C W, Gao M Z, et al.Nondestructive measurement of moisture of black tea in drying process based on near infrared spectroscopy[J]. Journal of Tea Science, 2016, 36(2): 184-190.
[26] 芦永军. 近红外光谱分析技术及其在人参成份分析中的应用研究[D]. 北京: 中国科学院, 2005.
Lu Y J.Study on near infrared spectroscopy and its application in ginseng analysis [D]. Beijing: Chinese Academy of Sciences, 2005.
[27] Zhang Z Z, Wang S P, Wan X C, et al.Evaluation of sensory and composition properties in young tea shoots and their estimation by near infrared spectroscopy and partial least squares techniques[J]. Spectroscopy Europe, 2011, 23(4): 17-21.
[28] 宁井铭, 孙磊, 张正竹, 等. 基于近红外技术的绿茶杀青自动控制系统设计与试验[J]. 安徽农业大学学报, 2013, 40(6): 899-902.
Ning J M, Sun L, Zhang Z Z, et al.Design and experiment of automatic control in green tea firing process based on infrared spectroscopy[J]. Journal of Anhui Agricultural University, 2013, 40(6): 899-902.
[29] Wang Y J, Li T H, Li L Q, et al.Micro-NIR spectrometer for quality assessment of tea: comparison of local and global models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 237: 118403. doi: 10.1016/j.saa.2020.118403.
[30] Wang Y J, Jin S S, Li M H, et al.Onsite nutritional diagnosis of tea plants using micro near-infrared spectrometer coupled with chemometrics[J]. Computers and Electronics in Agriculture, 2020, 175: 105538. doi: 10.1016/j.compag.2020.105538.
[31] Huang J, Ren G X, Sun Y M, et al.Qualitative discrimination of Chinese dianhong black tea grades based on a handheld spectroscopy system coupled with chemometrics[J]. Food Science & Nutrition, 2020, 8(4): 2015-2024.
[32] Sun Y M, Wang Y J, Huang J, et al.Quality assessment of instant green tea using portable NIR spectrometer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 240: 118576. doi: 10.1016/j.saa.2020.118576.
[33] 任广鑫, 范起业, 何鑫, 等. 近红外光谱(NIRS)技术在茶叶领域研究中的应用与展望[J]. 中国茶叶加工, 2013(1): 20-24, 29.
Ren G X, Fan Q Y, He X, et al.Application and prospect of near-infrared spectroscopy technology in tea research[J]. China Tea Processing, 2013(1): 20-24, 29.
文章导航

/