欢迎访问《茶叶科学》,今天是
研究报告

小贯小绿叶蝉取食诱导抗、感茶树品种挥发物的释放

  • 任倩倩 ,
  • 庄明珠 ,
  • 蔡晓明 ,
  • 边磊 ,
  • 罗宗秀 ,
  • 李兆群 ,
  • 尤民生 ,
  • 陈宗懋 ,
  • 金珊
展开
  • 1.茶学福建省高等学校重点实验室,福建农林大学园艺学院,福建 福州 350002;
    2.中国农业科学院茶叶研究所,浙江 杭州 310008;
    3.应用生态研究所,福建农林大学植物保护学院,福建 福州 350002
任倩倩,女,硕士研究生,主要从事茶叶质量安全研究。

收稿日期: 2020-06-22

  修回日期: 2020-08-26

  网络出版日期: 2020-12-10

基金资助

闽台作物有害生物生态防控国家重点实验室开放课题(SKL20190010)、国家重点研发计划项目(2016YFE0102100)、国家茶叶质量安全工程技术研究中心开放课题(KIG17004A)

The Release of Volatiles in Resistant and Susceptible Tea Cultivars under Empoasca Onukii Feeding

  • REN Qianqian ,
  • ZHUANG Mingzhu ,
  • CAI Xiaoming ,
  • BIAN Lei ,
  • LUO Zongxiu ,
  • LI Zhaoqun ,
  • YOU Minsheng ,
  • CHEN Zongmao ,
  • JIN Shan
Expand
  • 1. College of Horticulture, Key Laboratory of Tea Science, Fujian Agricultural and Forest university, Fuzhou 350002, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Institute of Applied Ecology, Agricultural and Forest university, Fuzhou 350002, China

Received date: 2020-06-22

  Revised date: 2020-08-26

  Online published: 2020-12-10

摘要

为研究不同抗性水平茶树应对小贯小绿叶蝉取食诱导的挥发物释放及相关代谢机制,以抗虫茶树品种举岩(JY)和感虫茶树品种恩标(EB)为试验材料,利用动态顶空收集法结合GC-MS技术检测茶树在小贯小绿叶蝉取食不同时间(6、12、24、36、48、72βh)释放的主要挥发物组分,并结合转录组数据分析主要挥发物合成途径上的相关基因的表达水平及其调控趋势。结果表明,在健康状态下,茶树释放的挥发性物质较少;在虫害后不同时间段的茶样中检测到顺-β-罗勒烯(β-Ocimene)、(E)-4,8-二甲基-1,3,7-壬三烯[(E)-4,8-dimethyl-1,3,7-nonatriene,DMNT]、芳樟醇(Linalool)、法尼烯(Farnesene)等10种主要挥发物。其中,单萜类物质在虫害诱导的感虫品种茶树上含量高,倍半萜类物质在虫害诱导的抗虫品种茶树中含量高。转录组数据显示,小贯小绿叶蝉取食诱导抗、感茶树品种中调控萜类合成的关键基因均被明显激活。调控单萜类物质合成的相关基因在感虫茶树品种中的表达量相对较高,而调控倍半萜类物质合成的相关基因在抗虫品种中的表达量与感虫品种差异不显著。本研究结果为茶树抗虫机制和小贯小绿叶蝉绿色防控提供一定的理论依据。

本文引用格式

任倩倩 , 庄明珠 , 蔡晓明 , 边磊 , 罗宗秀 , 李兆群 , 尤民生 , 陈宗懋 , 金珊 . 小贯小绿叶蝉取食诱导抗、感茶树品种挥发物的释放[J]. 茶叶科学, 2020 , 40(6) : 795 -806 . DOI: 10.13305/j.cnki.jts.2020.06.008

Abstract

In order to study the volatile release and the relative metabolism induced by small green leafhoppers (Empoasca onukii) feeding in tea plants, the resistant tea cultivar (JY) and susceptible tea cultivar (EB) were used as materials. The time course (6, 12, 24, 36, 48, 72βh) of tea volatile compounds released by tea plants under E. onukii feeding were collected and detected by using dynamic headspace collection method and GC-MS technology. An integrative analysis of the metabolism and transcriptome data was then performed, and the target genes in the synthetic pathway of the main volatiles were screened and analyzed. The results show that healthy tea plants released less volatiles. While ten main volatiles such as β-Ocimene, DMNT, Linalool, Farnesene, etc. were identified in tea plants under E. onukii feeding. Among them, the contents of monoterpenoids were higher in the susceptible tea cultivar EB, and sesquiterpenoids were higher in the resistant tea cultivar JY. Furthermore, transcriptome data show that the key genes in terpene synthesis pathway were up-regulated in both cultivars after E. onukii feeding. The expression levels of genes related to the synthesis of monoterpenoids were relatively higher in susceptible tea cultivar than those in resistant cultivar. However, no significant expression differences were identified in genes related to sesquiterpenes synthesis in resistant and susceptible tea cultivars. The results of this study provided a theoretical basis for the tea resistance mechanism and green control of leafhopper in tea plantation.

参考文献

[1] 许冬, 张永军, 陈洋, 等. 虫害诱导植物间接防御机制[J]. 植物保护, 2009, 35(1): 13-21.
Xu D, Zhang Y J, Chen Y, et al.Mechanisms of indirect defenses in plants induced by herbivores[J]. Plant Protection, 2009, 35(1): 13-21.
[2] Alessandra S, Silke A, Rossana M, et al.Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens[J]. Int J Mol Sci, 2013, 14: 17781-17811.
[3] 盛子耀, 李为争, 原国辉. 植物气味多样性与昆虫关系的研究进展[J]. 应用昆虫学报, 2019, 56(4): 652-661.
Sheng Z Y, Li W Z, Yuan G H.Advances in studies on the relationship between plant odor diversity and insects[J]. Chinese Journal of Applied Entomology, 2019, 56(4): 652-661.
[4] Qin D, Zhang L, Xiao Q, et al.Clarification of the identity of the tea green leafhopper based on Morphological comparison between Chinese and Japanese specimens[J]. Plos One, 2015, 10(9): e0139202. doi: 10.1371/journal.pone.0139202.
[5] Tian Y, Zhao Y, Zhang L, et al.Morphological, physiological, and biochemical responses of two tea cultivars to Empoasca onukii (Hemiptera: Cicadellidae) infestation[J]. Journal of Economic Entomology, 2018, 111(2): 899-908.
[6] Jin S, Chen Z M, Backus E A, et al.Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities[J]. Journal of Insect Physiology, 2012, 58(9): 1235-1244.
[7] Wei Q, Mu X C, Yu H Y, et al.Susceptibility of Empoasca vitis (Hemiptera: Cicadellidae) populations from the main tea-Susceptibility of Empoasca vitis (Hemipera: Cicadellidae) populations from the main tea-growing regions of China to thirteen insecticides[J]. Crop Protection, 2017, 96: 204-210.
[8] 金珊, 孙晓玲, 陈宗懋, 等. 不同茶树品种对假眼小绿叶蝉的抗性[J]. 中国农业科学, 2012, 45(2): 255-265.
Jin S, Sun X L, Chen Z M, et al.Resistance of different tea cultivars to Empoasca vitis Gӧthe[J]. Chinese Academy of Agricultural Sciences, 2012, 45(2): 255-265.
[9] Guo J, Qi J, He K, et al.The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field[J]. Plant Biotechnology Journal, 2019, 17(1): 88-102.
[10] 蔡晓明. 三种茶树害虫诱导茶树挥发物的释放规律[D]. 北京: 中国农业科学院, 2009.
Cai X M.The emission of tea plant volatiles induced by three herbivore insect pests [D]. Beijing: Chinese Academy of Agricultural Sciences, 2009.
[11] 付建玉. 茶树倍半萜类物质代谢及其对虫害胁迫响应[D]. 北京: 中国农业科学院, 2017.
Fu J Y.The sesquiterpene metabolism and response to diverse biotic stresses in tea plant [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[12] 张正群. 非生境植物挥发物对茶树害虫的行为调控功能[D]. 北京: 中国农业科学院, 2013.
Zhang Z Q.Behavioral manipulating functions of non-host plant volatiles to main tea pests [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[13] 金珊, 韩李伟, 叶乃兴, 等. 茶小绿叶蝉危害乌龙茶茶树品种的挥发物分析[J]. 热带作物学报, 2019, 40(3): 576-582.
Jin S, Han L W, Ye N X, et al.Analysis on volatiles of Oolong tea varieties induced by Empoasca sp.[J]. Chinese journal of tropical crops, 2019, 40(3): 576-582.
[14] 韩善捷, 潘铖, 韩宝瑜. 假眼小绿叶蝉为害致茶梢挥发物变化及其引诱微小裂骨缨小蜂效应[J]. 中国生物防治学报, 2016, 32(2): 142-148.
Han S J, Pan C, Han B Y.Changes in volatiles of tea shoots damaged by tea green leafhoppers and their attraction to Schizophragma parvula Ogloblin[J]. Chinese Journal of Biological Control, 2016, 32(2): 142-148.
[15] Jin S, Ren Q Q, Lian L L, Cai X M, et al.Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage[J]. Planta, 2020, 252(10): 1-15.
[16] Chen C, Xia R, Chen H, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
[17] 杨新根, 谢映平, 薛皎亮, 等. 柿树被日本龟蜡蚧危害后挥发物的变化及其对红点唇瓢虫的引诱作用[J]. 应用与环境生物学报, 2006, 12(2): 215-219.
Yang X G, Xie Y P, Xue J L, et al.Change in volatiles of Diospyros Kaki L. f. damaged by Ceroplastes japonicus green and their attraction to Chilocoru[J]. Chinese Journal of Applied And Environmental Biology, 2006, 12(2): 215-219.
[18] 李进进. (E)-beta-法尼烯介导的除虫菊—蚜虫—瓢虫分子生态机制研究[D]. 武汉: 华中农业大学, 2019.
Li J J.The molecular ecological mechanism of pyrethrum-aphid-ladybird mediated by (E)-beta-farnesene [D]. Wuhan: Huanzhong Agricultural University, 2019.
[19] 李艳艳, 周晓榕, 庞保平, 等. 多异瓢虫对瓜蚜为害后植物挥发物的行为反应及挥发物成分分析[J]. 昆虫学报. 2013, 56(2): 153-160.
Li Y Y, Zhou X R, Pang B P, et al.Behavioral responses of Hippodamia variegata (an-Coleoptera: Coccinellidae) to volatiles from plants infested by Aphis gossypii (Hemiptera: Aphidae) and analysis of volatile components[J]. Acta Entomologia Sinica, 2013, 56(2): 153-160.
[20] Huang X Z, Xiao Y T, Köllner T G, et al.The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores[J]. Plant, Cell & Environment, 2018, 41(1): 261-274.
[21] 张华峰. 桉树枝瘿姬小蜂侵害机理及寄主桉树化学防御研究[D]. 福州: 福建农林大学, 2013.
Zhang H F.Studies on mechanism of Leptocybe invasa infestation and chemical defense of Eucalyptus [D]. Fuzhou: Fujian Agricultural and Forestry University, 2013.
[22] Zeng L, Liao Y, Li J, et al. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants[J]. Plant Sci, 2017, 264: 29-36.
[23] 左照江, 张汝民, 高岩. 植物间挥发物信号的研究进展[J]. 植物学报, 2009, 44(2): 245-252.
Zuo Z J, Zhang R M, Gao Y.Research advances in volitiles signals among plants[J]. Bulletin of botany, 2009, 44(2): 245-252.
[24] Theis N, Lerdau M.The evolution of function in plant secondary metabolites [J]. The University of Chicago Press, 2003, 53(164): 93-102.
[25] Bustos S C, Foley W J.Foliar terpene chemotypes and herbivory determine variation in plant volatile emissions[J]. J Chem Ecol. 2018, 44(1): 51-61.
[26] 杨伟伟, 李振基, 安钰, 等. 植物挥发性气体(VOCs)研究进展[J]. 生态学杂志, 2008(8): 1386-1392.
Yang W W, Li Z J, An Y, et al.Plant volatiles organic compounds (VOCs): a review[J]. Chinese journal of ecology, 2008(8): 1386-1392.
[27] Block A K, Vaughan M M, Schmelz E A, et al.Biosynthesis and function of terpenoid defense compounds in maize (Zea mays)[J]. Planta, 2019, 249(1): 21-30.
[28] Aljbory Z, Chen M S.Indirect plant defense against insect herbivores: a review[J]. Insect Sci, 2018, 25(1): 2-23.
[29] Matsui K.Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism[J]. Current Opinion in Plant Biology, 2006, 9(3): 274-280.
[30] 章金明. MeSA、叶蝉为害和机械刺伤对茶芽挥发物及PAL、PPO酶活性影响[D]. 北京: 中国农业科学院, 2006.
Zhang J M.Effects of exotic MeSA, leafhopper-damaging and mechanically piercing on the volatile ingredients and PAL, PPO, activity in tea shoots [D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.
[31] 卢绍辉, 袁国军, 梅象信. 假眼小绿叶蝉取食诱导茶梢挥发物组分分析[J]. 河南农业科学, 2009(11): 87-89.
Lu S H, Yuan G J, Mei X X.Volatiles components on tea shoot induced by tea green leafhoppers[J]. Journal of Henan Agricultural Science, 2009(11): 87-89.
[32] 王国昌. 三种害虫诱导茶树挥发物的生态功能[D]. 北京: 中国农业科学院, 2010.
Wang G C.Ecological functions of tea plant volaties induced by three herbivores [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[33] Mei X, Liu X Y, Zhou Y, et al.Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda)[J]. Food Chem, 2017, 237: 356-363.
[34] Li F Q, Li W, Lin Y J, et al.Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest[J]. Plant, cell & environment, 2018, 41(1): 111-120.
[35] 刘丹凤. 陆地棉间接防御物质萜烯同系物的合成代谢研究[D]. 北京: 中国农业科学院, 2018.
Liu D F.Anabolism of homoterpenes involved in indirect defense of Gossipium hirsutum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
[36] 赵冬香, 高景林, 陈宗懋, 等. 假眼小绿叶蝉对茶树挥发物的定向行为反应[J]. 华南农业大学学报(自然科学版), 2002, 23(4): 27-29.
Zhao D X, Gao J L, Chen Z M, et al.Orientation response of Empoasca vitis to tea shoots volatiles[J]. Journal of South China Agricultural University (Natural Science Edition), 2002, 23(4): 27-29.
[37] 王梦馨. 叶蝉诱导的茶树重要防御相关基因的功能解析和互利素鉴定应用[D]. 南京: 南京农业大学, 2012.
Wang M X.Function analysis of defence-related genes of tea plant (Camellia sinensis) and identification and application of its synomones induced by tea green leafhopper [D]. Nanjing: Nanjing Agricultural University, 2012.
[38] 桂茜. 罗勒烯促进植物抗虫分子机制的初步研究[D]. 长沙: 湖南农业大学, 2017.
Gui Q.Preliminary study on the mechanism of ocimene promoting plant insect resistance [D]. Changsha: Hunan Agricultural University, 2017.
[39] Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089.
[40] Yang H, Xie S, Wang L, et al.Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper[J]. Scientia Horticulturae, 2011, 130(2): 476-481.
[41] Wang Y N, Tang L, Hou Y, et al.Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq[J]. Funct Integr Genomics, 2016, 16(4): 383-398.
[42] 寇俊凤. 棉花(E)-β-罗勒烯合成酶基因GhTPS16的功能解析[D]. 北京: 中国农业科学院, 2019.
Kou J F.Functional analysis of (E)-β-ocimene synthase gene GhTPS16 from Gossypium hirsutum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[43] Zeng X L, Liu C, Zheng R R, et al.Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Osmanthus fragrans Lour[J]. Front. Plant Sci, 2016, 6: 1232-1248.
[44] Zeng L T, Watanabe N, Yang Z Y.Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Crit Rev Food Sci Nutr, 2019, 59(14): 2321-2334.
[45] Kappers I F, Aharoni A, van Herpen T W, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 2005, 309(5743): 2070-2072.
[46] 郭帅帅, 原国辉, 柴晓乐, 等. (E)-β-法尼烯和(-)-β-石竹烯在桃蚜-七星瓢虫化学通讯中的相互作用[J]. 河南农业大学学报, 2017, 51(1): 43-48.
Guo S S, Yuan G H, Chai X L, et al.Interactive effect of (E)-β-farnesene and (-)-β-caryophyllene on chemical communication between Myzus persicae and Coccinella septempunctata[J]. Journal of Henan Agricultural University, 2017, 51(1): 43-48.
[47] Liu D F, Huang X Z, Jiang W X, et al.Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynthesis[J]. Plant Biotechnology Journal, 2018, 16(2): 581-590.
[48] Cai X M, Xu X, Bian L, et al.Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 9105-9114.
文章导航

/