欢迎访问《茶叶科学》,今天是
研究报告

不同类型茶园土壤N2O排放速率及其影响因素

  • 范利超 ,
  • 邹振浩 ,
  • 韩文炎
展开
  • 中国农业科学院茶叶研究所,浙江 杭州 310008
范利超,男,博士研究生,主要从事土壤碳氮循环方面研究,flcxsy@126.com。

收稿日期: 2020-04-17

  修回日期: 2020-05-06

  网络出版日期: 2021-04-13

基金资助

国家重点研发计划(2017YFE0107500)

Soil N2O Emission in Different Tea Gardens and Its Affecting Factors

  • FAN Lichao ,
  • ZOU Zhenhao ,
  • HAN Wenyan
Expand
  • Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2020-04-17

  Revised date: 2020-05-06

  Online published: 2021-04-13

摘要

对不同生产力(高、中、低产)和种植年限(10、45、100 a)的茶园及与其相邻林地土壤N2O的排放速率进行了田间原位测定,并探究其与土壤pH、有机碳、总氮、水溶性有机碳氮、微生物生物量碳氮(MBN)、铵态氮和硝态氮等土壤理化性质的关系。结果表明,不同类型茶园间的土壤理化性质有显著差异,且各土壤理化性质之间有一定相关性;不同类型茶园的平均N2O排放速率(以N计)为3.14 mg·m-2·h-1,其中100 a茶园N2O的排放速率(以N计)为4.47 mg·m-2·h-1,显著高于其他茶园;茶园N2O排放速率是林地的3.1~7.2倍。Mantel检验表明N2O的排放速率与水溶性有机碳、有机碳、总氮及微生物碳氮呈显著正相关(P<0.05),线性回归和结构方程模型表明MBN是茶园土壤N2O排放速率的最显著影响因子。

本文引用格式

范利超 , 邹振浩 , 韩文炎 . 不同类型茶园土壤N2O排放速率及其影响因素[J]. 茶叶科学, 2021 , 41(2) : 193 -202 . DOI: 10.13305/j.cnki.jts.20201209.003

Abstract

In this study, we measured the in-situ N2O emission rate in different types of tea gardens including productivity (high, medium and low) and planting years (10 a, 45 a and 100 a) and their adjacent forest, and analyzed the relationships between N2O emission rate and soil properties including pH, organic carbon, total nitrogen, water-soluble organic carbon and nitrogen, microbial biomass carbon and nitrogen, ammonium nitrogen, and nitrate nitrogen. The results show that different types of tea gardens had significant effects on the changes of soil properties, and there were significant correlations between the soil properties. The average N2O emission rate (N emission equivalents) in tea gardens was 3.14 mg·m-2·h-1, and the highest was in 100 a tea garden with the value of 4.47 mg·m-2·h-1. The N2O emission rates in tea gardens were 3.1-7.2 times higher than that in forest. Mantel test shows that the N2O emission rate was significantly and positively correlated with water-soluble organic carbon, organic carbon, total nitrogen, and microbial biomass carbon and nitrogen (P<0.05). Linear regression and structural equation models show that microbial biomass nitrogen (MBN) was the most significant factor affecting the N2O emission rate in the tested fields.

参考文献

[1] Dlugokencky E.Global monitoring laboratory: NOAA/GML [EB/OL]. [2020-04-17].www.esrl.noaa.gov/gmd/ccgg/trends_n2o.
[2] Styles R V, Seitzinger S P, Kroeze C.Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects[J]. Chemosphere, 2000, 2(3/4): 267-279.
[3] Barnard R, Leadley P W, Hungate B A. Global change, nitrification,denitrification: a review [J]. Global Biogeochemical Cycles, 2005, 19(1): GB1007. doi: 10.1029/2004GB002282.
[4] Deppe M, Well R, Giesemann A, et al.Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots[J]. Soil Biology and Biochemistry, 2017, 104: 68-80.
[5] Cantarel A A, Bloor J M, Pommier T, et al.Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem[J]. Global Change Biology, 2012, 18(8): 2520-2531.
[6] Dijkstra F A, Prior S A, Runion G B, et al.Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments[J]. Frontiers in Ecology and the Environment, 2012, 10(10): 520-527.
[7] Luo G J, Kiese R, Wolf B, et al.Effects of soil temperature and moisture on methane uptakes and nitrous oxide emissions across three different ecosystem types[J]. Biogeosciences Discussions, 2013, 10(1): 3205-3219.
[8] 白军红, 邓伟. 朱颜明, 等. 霍林河流域湿地土壤碳氮空间分布特征及生态效应[J]. 应用生态学报, 2003, 14(9): 1494-1498.
Bai J H, Deng W, Zhu Y M, et al.Spatial distribution characteristics and ecological effects of soil carbon and nitrogen in Huolin River catchment wetland[J]. Journal of Applied Ecology, 2003, 14(9): 1494-1498.
[9] 党亚爱, 李世清, 王国栋, 等. 黄土高原典型土壤全氮和微生物氮剖面分布特征研究[J]. 植物营养与肥料学报, 2007, 13(6): 1020-1027.
Dang Y A, Li S Q, Wang G D, et al.Study on the profile distribution characteristics of total nitrogen and microbial nitrogen in typical soils of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2007, 13(6): 1020-1027.
[10] Chapuis L L, Wrage N, Metay A, et al.Soils, a sink for N2O: a review[J]. Global Change Biology, 2007, 13(1): 1-17.
[11] 韩文炎. 茶园土壤微生物量、硝化和反硝化作用研究[D]. 杭州: 浙江大学, 2012.
Han W Y.Study on soil microbial biomass, nitrification and denitrification in tea garden [D]. Hangzhou: Zhejiang University, 2012.
[12] Huang Y, Li Y, Yao H.Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils and Sediments, 2014, 14(1): 146-154.
[13] 黄莹. 茶园土壤N2O排放特征及其微生物机制研究[D]. 杭州: 浙江大学, 2014.
Huang Y.N2O emission characteristics and microbial mechanism of tea garden soil [D]. Hangzhou: Zhejiang University, 2014.
[14] 薛冬, 姚槐应, 黄昌勇. 不同利用年限茶园土壤矿化、硝化作用特性[J]. 土壤学报, 2007, 44(2): 373-378.
Xue D, Yao H Y, Huang C Y.Characteristics of soil mineralization and nitrification in tea garden with different utilization years[J]. Journal of Soil Science, 2007, 44(2): 373-378.
[15] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-74.
Han W Y, Ruan J Y, Lin Z, et al.Research on the main nutrient barrier factors of tea garden soil and series of special fertilizer for tea tree[J]. Journal of Tea Science, 2002, 22(1): 70-74.
[16] 韩文炎, 李强. 茶园施肥现状与无公害茶园施肥技术[J]. 中国茶叶, 2002, 6(24): 29-31.
Han W Y, Li Q.Current situation of fertilization in tea garden and fertilization technology in pollution-free tea garden[J]. China Tea, 2002, 6(24): 29-31.
[17] 林衣东, 韩文炎. 不同土壤N2O排放的研究[J]. 茶叶科学, 2009, 29(6): 456-464.
Lin Y D, Han W Y.Studies on N2O emissions from different soils[J]. Journal of Tea Science, 2009, 29(6): 456-464.
[18] 范利超, 韩文炎, 李鑫, 等. 茶园及相邻林地土壤N2O排放的垂直分布特征[J]. 应用生态学报, 2015, 26(9): 2632-2638.
Fan L C, Han W Y, Li X, et al.Vertical distribution characteristics of N2O emission from tea garden and adjacent forest land[J]. Journal of Applied Ecology, 2015, 26(9): 2632-2638.
[19] Han W Y, Xu J M, Wei K, et al.Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6): 2495-2500.
[20] Fan L C, Han W Y.Soil respiration after forest conversion to tea gardens: a chronosequence study[J]. Catena, 2020, 190: 104532. doi: 10.1016/j.catena.2020.104532.
[21] Fan L C, Yang M Z, Han W Y.Soil respiration under different land uses in eastern China[J]. Plos One, 2015, 10(4): e0124198. doi: 10.1371/journal.pone.0124198.
[22] Han W Y, Kemmitt S J, Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology and Biochemistry, 2007, 39(7): 1468-1478.
[23] Fan L C, Han W Y.Soil respiration in Chinese tea gardens: autotrophic and heterotrophic respiration[J]. European Journal of Soil Science, 2018, 69(4): 675-684.
[24] Matthias A D, Yarger D N, Weinbeck R S.A numerical evaluation of chamber methods for determining gas fluxes[J]. Geophysical Research Letters, 1978, 5(9): 765-768.
[25] 范利超, 韩文炎, 李鑫, 等. 茶园与相邻林地土壤有机碳及基础呼吸的垂直分布特征[J]. 农业环境科学学报, 2015, 34(6): 1149-1157.
Fan L C, Han W Y, Li X, et al.Vertical distribution characteristics of soil organic carbon and basal respiration in tea garden and adjacent forest land[J]. Journal of Agricultural Environmental Science, 2015, 34(6): 1149-1157.
[26] 范利超, 杨明臻, 韩文炎. 温湿度和外源有机质对茶园土壤基础呼吸作用的影响[J]. 土壤通报, 2014, 45(6): 1383-1389.
Fan L C, Yang M Z, Han W Y.Effects of temperature, humidity and exogenous organic matter on basic respiration of tea garden soil[J]. Soil Bulletin, 2014, 45(6): 1383-1389.
[27] Diniz-Filho J A F, Soares T N, Lima J S, et al. Mantel test in population genetics[J]. Genetics and Molecular Biology, 2013, 36(4): 475-485.
[28] Xu Y, Xu Z, Cai Z, et al.Review of denitrification in tropical and subtropical soils of terrestrial ecosystems[J]. Journal of Soils and Sediments, 2013, 13(4): 699-710.
[29] Zhang J, Cai Z, Cheng Y, et al.Denitrification and total nitrogen gas production from forest soils of Eastern China[J]. Soil Biology and Biochemistry, 2009, 41(12): 2551-2557.
[30] Parkin T B.Soil microsites as a source of denitrification variability[J]. Soil Science Society of America Journal, 1987, 51(5): 1194-1199.
[31] Barton L, Mclay C, Schipper L A, et al.Annual denitrification rates in agricultural and forest soils: a review[J]. Soil Research, 1999, 37(6): 1073-1094.
[32] Stark J M, Hart S C.High rates of nitrification and nitrate turnover in undisturbed coniferous forests[J]. Nature, 1997, 385(6611): 61-64.
[33] Han W Y, Xu J M, Yi X Y, et al.Net and gross nitrification in tea soils of varying productivity and their adjacent forest and vegetable soils[J]. Soil Science and Plant Nutrition, 2012, 58(2): 173-182.
[34] 韩文炎, 徐建明. 茶园土壤NO3--N含量与净硝化速率的研究[J]. 茶叶科学, 2011, 31(6): 513-520.
Han W Y, Xu J M.Study on NO3--N content and net nitrification rate of tea garden soil[J]. Journal of Tea Science, 2011, 31(6): 513-520.
[35] De Boer W, Kowalchuk G A.Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 2001, 33(7/8): 853-866.
[36] Huang Y, Li Y Y, Yao H Y.Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils and Sediments, 2014, 14(1): 146-154.
[37] Yao H Y, Gao Y M, Nicol G W, et al.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625.
[38] Inubushi K, Furukawa Y, Hadi A, et al.Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan[J]. Chemosphere, 2003, 52(3): 603-608.
文章导航

/