欢迎访问《茶叶科学》,今天是
研究报告

基于非靶向代谢组学分析白茶室内自然萎凋过程代谢物的变化规律

  • 岳文杰 ,
  • 金心怡 ,
  • 陈明杰 ,
  • 叶乃兴 ,
  • 郭丽 ,
  • 赵峰
展开
  • 1.福建农林大学金山学院,福建 福州 350002;
    2.福建农林大学园艺学院,福建 福州 350002;
    3.福建农林大学园艺植物生物学及代谢组学研究中心,福建 福州 350002;
    4.信阳师范学院生命科学学院及河南省茶树生物学重点实验室,河南 信阳 464000;
    5.中国农业科学院茶叶研究所,浙江 杭州 310008;
    6.福建中医药大学药学院,福建 福州 350122
岳文杰,男,讲师,主要从事茶叶加工与茶叶资源利用方面研究。

收稿日期: 2020-08-17

  修回日期: 2020-11-11

  网络出版日期: 2021-06-15

基金资助

国家自然科学基金(31270735)、福建省教育厅中青年教师教育科研项目(JAT170885)、福建农林大学科技创新专项基金(CXZX2016117)、福建农林大学金山学院青年教师科研基金立项项目(z170701)

Analysis of Metabolite Changes in the Natural Withering Process of Fu′an White Tea Based on Non-targeted Metabolomics Approach

  • YUE Wenjie ,
  • JIN Xinyi ,
  • CHEN Mingjie ,
  • YE Naixing ,
  • GUO Li ,
  • ZHAO Feng
Expand
  • 1. Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. FAFU-UCR Joint Center/Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    4. College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
    5. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    6. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

Received date: 2020-08-17

  Revised date: 2020-11-11

  Online published: 2021-06-15

摘要

以福安大白茶品种鲜叶为材料,按照室内自然萎凋工艺加工白茶,每隔3 h采集过程样,利用非靶向代谢组学技术分析了代谢物的含量变化。结果表明,在白茶室内自然萎凋过程中,茶鲜叶中的代谢物含量呈现规律性的动态变化。研究共鉴定到106种代谢物,其含量呈现5种主要变化趋势。这些变化趋势可以分为4个阶段,分别为萎凋前24 h、萎凋24~48 h、萎凋48~57 h、萎凋57 h之后。这些差异代谢物按照结构分为4种类型:类黄酮化合物中8种单体儿茶素(Catechins)在萎凋过程中呈现下降趋势;18种原花青素物质(PAs)和5种聚酯型儿茶素(TSs)有升有降;含没食子酰基的PAs与TSs含量均呈现上升趋势,而未含该基团的两类物质含量则呈现下降趋势。糖苷衍生物中6种山奈酚(Kaempferol)糖苷,4种槲皮素(Quercetin)糖苷,1种芹菜素(Apigenin)糖苷含量均呈上升趋势,且在萎凋48 h后含量明显上升。在萎凋过程中12种酚酸类物质中5种呈现上升趋势,7种呈现下降趋势,这些物质均在萎凋至57~60 h时出现最高或最低值。此外,分析了生物碱、氨基酸与多肽、香豆素类、糖等20种代谢物的含量变化,其中咖啡碱含量呈现上升趋势,在萎凋60 h时最高,可可碱含量在萎凋中期下降明显,萎凋后期略有回升,2种茶氨酸异构体和4种香豆素物质含量在萎凋至12 h达到峰值,此后总体呈下降趋势。本研究为明确白茶在自然萎凋加工过程中的生物代谢调控机制提供重要参考。

本文引用格式

岳文杰 , 金心怡 , 陈明杰 , 叶乃兴 , 郭丽 , 赵峰 . 基于非靶向代谢组学分析白茶室内自然萎凋过程代谢物的变化规律[J]. 茶叶科学, 2021 , 41(3) : 379 -392 . DOI: 10.13305/j.cnki.jts.20210304.001

Abstract

In this study, Camellia sinensis cv Fu'an Dabai was used as materials to make white tea following the standard indoor natural withering procedure. Samples were collected every 3 h, and non-targeted metabolomics was used to analyze tea metabolite changes. Principal component analysis (PCA) shows that metabolite contents in fresh leaves showed regular dynamic changes during the process of indoor natural withering of white tea. Totally 109 metabolites with significant difference were identified and showed 5 major patterns. These patterns could be divided into four stages: 24 h before withering, 24-48 h during withering, 48-57 h during withering and after 57 h. According to their structure, these metabolites can be classified into 4 types. The 8 monomer catechins (Catechins) showed a downward trend during the withering process. The contents of 18 proanthocyanidins (PAs) and 5 Theasinensins (TSs) showed different trends. The galloyl containing PAs and TSs showed an upward trend, while non- galloyl containing PAs and TSs showed an opposite trend. For glycoside derivatives, 6 kaempferol glycosides, 4 Quercetin (quercetin) glycoside and 1 apigenin glycoside showed an upward trend. Their contents increased significantly after 48 h withering. In the process of withering, 5 of the 12 phenolic acids showed an upward trend. While the rest 7 showed a downward trend. All of them reached their peaks or bottom at 57-60 h. In addition, 22 different metabolites including alkaloids, amino acids, peptides, coumarins, sugars, etc. were also identified. Caffeine showed an upward trend. Their contents reached the peaks at 60 h. Theobromine decreased significantly in the mid-withering period, and slightly recovered in the latter period. The contents of 2 theanine isomer and 4 coumarins rose to the peak at 12 h. After that, there was an overall downward trend during the withering process. These data offered important insights for understanding the biosynthesis and regulation mechanism of white tea during indoor natural withering process.

参考文献

[1] Hashimoto T, Goto M, Sakakibara H, et al.Yellow tea is more potent than other types of tea in suppressing liver toxicity induced by carbon tetrachloride in rats[J]. Phytotherapy Research, 2007, 21(7): 668-670.
[2] Wang K, Liu F, Liu Z, et al.Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer[J]. International Journal of Food Science & Technology, 2011, 46(7): 1406-1412.
[3] Yang Z, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[4] Azman N A M, Peiró S, Fajarí L, et al. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2014, 62(25): 5743-5748.
[5] Carloni P, Tiano L, Padella L, et al.Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International, 2013, 53: 900-908.
[6] Dias T R, Alves M G, Tomas G D, et al.White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 608-617.
[7] Espinosa C, Lopez-Jimenez J A, Perez-Llamas F, et al. Long-term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats[J]. J Sci Food Agr, 2016, 96(9): 3079-3087.
[8] Hajiaghaalipour F, Kanthimathi M S, Sanusi J, et al.White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage[J]. Food Chemistry, 2015, 169: 401-410.
[9] Dias T R, Alves M G, Rato L, et al.White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality[J]. J Nutr Biochem, 2016(37): 83-93.
[10] Song J L, Zhou Y L, Feng X, et al.White tea (Camellia sinenesis (L.)) ethanol extracts attenuate reserpine-induced gastric ulcers in mice[J]. Food Sci Biotechnol, 2015, 24(3): 1159-1165.
[11] Santana-Rios G, Orner G A, Amantana A, et al.Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay[J]. Mutation Research, 2001, 495: 61-74.
[12] López V, Calvo M I.White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells[J]. Plant Foods for Human Nutrition, 2011, 66: 22-26.
[13] Wang G, Zhao X.Comparative study on antimutagenic and in vitro anticancer activities between two kinds of white tea and green tea[J]. Food Science, 2009, 30: 243-245.
[14] 陈玉春, 王碧英. 白茶对小鼠血清红细胞生成素水平的影响[J]. 茶叶科学, 1998, 18(1): 159-160.
Chen Y C, Wang B Y.Effect of white tea on serum erythropoietin level in mice[J]. Journal of Tea Science, 1998, 18(1): 159-160.
[15] 梁丽云. 白茶在萎调及贮藏中茶多酚变化的研究[J]. 贵州茶叶, 2017, 45(2): 9-13.
Liang L Y.Research status on the change of tea polyphenols in the wilting and storage of white tea[J]. Guizhou Tea, 2017, 45(2): 9-13.
[16] 陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术, 2010(3): 27-30.
Tao X H, Chen C S, Lin Z H, et al.Preliminary study on the changes of tea EGCG in different tea processing[J]. Tea Science and Technology, 2010(3): 27-30.
[17] 陈静, 俞滢, 张丹丹, 等. 白茶萎凋过程中儿茶素合成关键酶基因表达分析[J]. 南方农业学报, 2016, 47(8): 1364-1369.
Chen J, Yu Y, Zhang D D, et al.Expression of genes encoding key enzymes in biosynthesis pathways of catechins in the withering process of white tea[J]. Journal of Southern Agriculture, 2016, 47(8): 1364-1369.
[18] Wang Y, Zheng P C, Liu P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry, 2019, 272: 313-322.
[19] Dai W, Xie D, Lu M, et al.Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International, 2017, 96: 40-45.
[20] Marat T, 张钎, 屈艳勤, 等. 白茶加工过程中有机酸组分含量分析[J]. 福建茶叶, 2019, 41(3): 11-12.
Marat T, Zhang Q, Qu Y Q, et al.Analysis of the content of organic acid components in the processing of white tea[J]. Tea in Fujian, 2019, 41(3): 11-12.
[21] 宋振硕, 王丽丽, 陈键, 等. 茶鲜叶萎凋过程中游离氨基酸的动态变化规律[J]. 茶叶学报, 2015, 56(4): 206-213.
Song Z S, Wang L L, Chen J, et al.Changes on free amino acids in fresh tea leaves during withering[J]. Acta Tea Sinica, 2015, 56(4): 206-213.
[22] Chen Q, Shi J, Mu B, et al.Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chem, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412.
[23] 张应根, 陈林, 陈泉宾, 等. 白茶自然萎凋过程中风味形成的动态研究[J]. 茶叶学报, 2016, 57(2): 80-84.
Zhang Y G, Chen L, Chen Q B, et al.Flavor formation of white tea during natural withering[J]. Acta Tea Sinica, 2016, 57(2): 80-84.
[24] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学, 2020, 41(12): 197-203.
Li X L, Yu X M, Lin J, et al.Comparative metabolite characteristics of white tea with green tea, Oolong tea and black tea based on non-targeted metabolomics approach[J]. Food Science, 2020, 41(12): 197-203.
[25] Jiang X L, Liu Y J, Wu Y H, et al.Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis][J]. Sci. Rep, 2015, 5: 8742. doi: 10.1038/srep08742.
[26] 王丽丽, 宋振硕, 陈键, 等. 茶鲜叶萎凋过程中儿茶素和生物碱的动态变化规律[J]. 福建农业学报, 2015, 30(9): 856-862.
Wang L L, Song Z S, Chen J, et al.Changes on catechin and alkaloid contents in fresh tea leaves during withering[J]. Fujian Journal of Agricultural Sciences, 2015, 30(9): 856-862.
[27] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 49.
Wan X C, Xia T.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 49.
[28] Dai X, Liu Y, Zhuang J, et al.Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins[J]. New Phytologist, 2020, 226(4): 1104-1116.
[29] Fraser K, Lane G A, Otter D E, et al.Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry, 2014, 151: 394-403.
[30] Zhang L, Tai Y L, Wang Y J, et al.The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS[J]. Sci Rep, 2017, 7: 46131. doi: 10.1038/srep46131.
[31] Liu C, Wang X, Shulaev V, et al.A role for leucoanthocyanidin reductase in the extension of proanthocyanidins[J]. Nat Plants, 2016, 2: 16182. doi: 10.1038/NPLANTS.2016.182.
[32] Wang P, Liu Y, Zhang L, et al.Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins[J]. The Plant Journal, 2019, 101(1): 18-36.
[33] Chen Q, Shi J, Mu B, et al.Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412.
[34] 白鸿. 保健食品功效成分检测方法[M]. 北京: 中国中医药出版社, 2011: 71.
Bai H.Testing method for functional components of health food [M]. Beijing: China Press of Traditional Chinese Medicine, 2011: 71.
[35] Wu C, Xu H, Héritier J, et al.Determination of catechins and flavonol glycosides in Chinese tea varieties[J]. Food Chemistry, 2012, 132(1): 144-149.
[36] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2007: 180-184.
Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2007: 180-184.
文章导航

/