欢迎访问《茶叶科学》,今天是
研究报告

两个EoNPV毒株对茶尺蠖和灰茶尺蠖的毒力差异

  • 徐彬 ,
  • 韩光杰 ,
  • 祁建杭 ,
  • 李传明 ,
  • 徐健 ,
  • 陆玉荣 ,
  • 刘琴
展开
  • 1.江苏里下河地区农业科学研究所/国家农业微生物扬州观测实验站,江苏 扬州 225007;
    2.扬州绿源生物化工有限公司,江苏 扬州 225008
徐彬,男,助理研究员,主要从事病虫害生物防治技术研究,13270002585@163.com。

收稿日期: 2020-11-23

  修回日期: 2021-04-25

  网络出版日期: 2021-08-12

基金资助

国家重点研发计划(2016YFD0200900)、江苏省自然科学基金(BK20191216)

Virulence Difference of Two Strains of EoNPV Isolates to Ectropis obliqua and Ectropis grisescens

  • XU Bin ,
  • HAN Guangjie ,
  • QI Jianhang ,
  • LI Chuanming ,
  • XU Jian ,
  • LU Yurong ,
  • LIU Qin
Expand
  • 1. Jiangsu Lixiahe District Institute of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Microbiology, Yangzhou, Yangzhou 225007, China;
    2. Yangzhou Luyuan Bio-chemical Co. Ltd., Yangzhou 225008, China

Received date: 2020-11-23

  Revised date: 2021-04-25

  Online published: 2021-08-12

摘要

通过确定不同茶尺蠖核型多角体病毒(Ectropis obliqua nucleopolyhedrovirus,EoNPV)毒株对茶尺蠖(Ectropis obliqua)和灰茶尺蠖(Ectropis grisescens)毒力水平的差异,为有效提高茶尺蠖病毒的防效提供理论基础。采用浸渍法,测定EoNPV浙江毒株(EoNPV-ZJ)和江西毒株(EoNPV-JX)对茶尺蠖和灰茶尺蠖3龄幼虫的毒力水平;通过克隆测序,多重比较分析EoNPV-ZJ和EoNPV-JX毒株同源重复区(hrs)。结果表明,EoNPV-JX对灰茶尺蠖和茶尺蠖3龄幼虫14 d的LC50分别为5.95×106 PIB·mL-1和3.14×106 PIB·mL-1,EoNPV-ZJ对灰茶尺蠖和茶尺蠖3龄幼虫14 d的LC50分别为1.13×107 PIB·mL-1和5.04×106 PIB·mL-1。EoNPV-JX和EoNPV-ZJ的hr1大小均为1 795 bp,含有11个完全回文序列,hr3大小均为665 bp,含有3个完全回文序列,与已报道的安徽毒株(EoNPV-AH)无差异;而hr2差异较大,其中EoNPV-JX hr2为864 bp,含有7个完全回文序列,EoNPV-ZJ hr2为1 168 bp,含有12个完全回文序列,均少于EoNPV-AH的18个完全回文序列。综合分析显示,EoNPV不同毒株对茶尺蠖的毒力水平高于其近缘种灰茶尺蠖;EoNPV-JX毒株对灰茶尺蠖的毒力高于EoNPV-ZJ毒株,造成EoNPV不同毒株毒力差异的主要原因可能与其hr2序列回文序列个数相关。

本文引用格式

徐彬 , 韩光杰 , 祁建杭 , 李传明 , 徐健 , 陆玉荣 , 刘琴 . 两个EoNPV毒株对茶尺蠖和灰茶尺蠖的毒力差异[J]. 茶叶科学, 2021 , 41(4) : 545 -552 . DOI: 10.13305/j.cnki.jts.2021.04.008

Abstract

The virulence differences of Ectropis obliqua nucleopolyhedrovirus (EoNPV) from different isolates to Ectropis obliqua and Ectropis grisescens were analyzed, which provided a basis for effectively improving the control effect of EoNPV. The virulence of EoNPV Zhejiang strain (EoNPV-ZJ) and EoNPV Jiangxi strain (EoNPV-JX) to third instar larvae of E. obliqua and E. grisescens were determined by leaf dipping. The homologous regions (hrs) of EoNPV-ZJ and EoNPV-JX were further sequenced and analyzed by multiple sequence alignment. The results indicate that the 14 d LC50 of EoNPV-JX to E. grisescens and E. obliqua were 5.95×106 PIB·mL-1 and 3.14×106 PIB·mL-1, respectively, while the 14 d LC50 of EoNPV-ZJ to the two tea geometrid moths were 1.13×107 PIB·mL-1 and 5.04×106 PIB·mL-1, respectively. The hr1 of EoNPV-JX and EoNPV-ZJ were both 1 795 bp in size, containing 11 complete palindrome sequences, and hr3 were both 665 bp in size, containing 3 complete palindrome sequences, which were the same as EoNPV Anhui strain (EoNPV-AH). However, the hr2 regions of the three strains were different. The hr2 of EoNPV-JX was 864 bp in size and contained 7 complete palindrome sequences, and it was 1 168 bp in size and contained 12 complete palindrome sequences in EoNPV-ZJ, all of which were less than the 18 complete palindrome sequences of hr2 in EoNPV-AH. Our study suggests that the virulence of different strains of EoNPV to E. obliqua were higher than that of its related species, E. grisescens, while the toxicity of EoNPV-JX to E. grisescens was more than that of EoNPV-ZJ. The sensitivity of E. obliqua to EoNPV was higher than that of E. grisescens. The virulence of EoNPV might be related to the number of palindromes of hr2.

参考文献

[1] 姜楠, 刘淑仙, 薛大勇, 等. 我国华东地区两种茶尺蛾的形态和分子鉴定[J]. 应用昆虫学报, 2014, 51(4): 987-1002.
Jiang N, Liu S X, Xue D Y, et al.External morphology and molecular identification of two tea geometrid moth from southern China[J]. Chinese Journal of Applied Entomology, 2014, 51(4): 987-1002.
[2] 葛超美, 殷坤山, 唐美君, 等. 灰茶尺蠖的生物学特性[J]. 浙江农业学报, 2016, 28(3): 464-468.
Ge C M, Yin K S, Tang M J, et al.Biological characteristics of Ectropis grisescens Warren[J]. Acta Agriculturae Zhejiangensis, 2016, 28(3): 464-468.
[3] 张昌娣. 茶树茶毛虫与茶尺蠖的发生与防治[J]. 现代农村科技, 2013(10): 29.
Zhang C D.Occurrence and control of tea caterpillar and tea looper[J]. Modern Rural Technology, 2013(10): 29.
[4] 李喜旺, 刘丰静, 邵胜荣, 等. 茶尺蠖绿色防控技术研究现状及展望[J]. 茶叶科学, 2017, 37(4): 325-331.
Li X W, Liu F J, Shao S R, et al.Research progress and prospect of green control techniques of Ectropis obliqua[J]. Journal of Tea Science, 2017, 37(4): 325-331.
[5] 郭慧芳, 方继朝, 韩召军. 昆虫病毒增效剂研究进展[J]. 昆虫学报, 2003, 46(6): 766-772.
Guo H F, Fang J C, Han Z J.Advances in insect virus synergists[J]. Acta Entomologica Sinica, 2003, 46(6): 766-772.
[6] 席羽. 茶尺蠖地理种群对茶尺蠖核型多角体病毒的敏感性差异及遗传变异研究[D]. 北京: 中国农业科学院, 2011.
Xi Y.Susceptibility variation against Ectropis obliqua nucleopolyhedrovirus and variation in geographic populations of tea geometrid, Ectropis obliqua prout [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
[7] 王晓庆, 彭萍, 胡翔, 等. 茶尺蠖对不同品系EoNPV敏感性的地理差异研究[J]. 西南农业学报, 2013, 26(4): 1062-1065.
Wang X Q, Peng P, Hu X, et al.Geographical difference of susceptibility of Ectropis obliqua (Prout) to different EoNPV strains[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1062-1065.
[8] 王晓庆, 冉烈, 彭萍, 等. EoNPV不同品系的致病力及增效作用的研究[J]. 西南大学学报(自然科学版), 2015, 37(3): 48-52.
Wang X Q, Ran L, Peng P, et al.Study on the virulence and the synergistic effect of EoNPV isolates against the larvae of geometrid Ectropis obliqua Prout[J]. Journal of Southwest China Normal University (Natural Science Edition), 2015, 37(3): 48-52.
[9] 刘琴, 徐健, 李传明, 等. 人工饲料条件下茶尺蠖的饲养与繁殖[J]. 茶叶科学, 2015, 35(4): 323-328.
Liu Q, Xu J, Li C M, et al.Growth and reproduction of Ectropis obliqua fed on artificial diet[J]. Journal of Tea Science, 2015, 35(4): 323-328.
[10] 唐美君. 茶尺蠖病毒制剂生产与应用技术的研究及推广[D]. 杭州: 浙江大学, 2008.
Tang M J.Studies on the production and application of EoNPV preparations for the management of the tea looper, Ectropis obliqua [D]. Hangzhou: Zhejiang University, 2008.
[11] 刘丽华, 王利群, 李兵, 等. 柞蚕多角体病毒的纯化和鉴定[J]. 应用与环境生物学报, 2005, 11(1): 112-114.
Liu L H, Wang L Q, Li B, et al.Purification and identification of Antheraea Pernyi nuclear polyhedrosis virus[J]. Chinese Journal of Applied and Environmental Biology, 2005, 11(1): 112-114.
[12] 鲁艳辉, 田俊策, 郑许松, 等. 室内测定6种化学杀虫剂对草地贪夜蛾幼虫的毒力[J]. 环境昆虫学报, 2020, 42(2): 329-334.
Lu Y H, Tian J C, Zheng X S, et al.Laboratory toxicity test of 6 chemical insecticides against Spodoptera frugiperda[J]. Journal of Environmental Entomology, 2020, 42(2): 329-334.
[13] 张益民, 赵怀宇, 张建红, 等. 茶尺蠖核型多角体病毒研究[J]. 生物防治通报, 1989, 5(4): 168-172.
Zhang Y M, Zhao H Y, Zhang J H, et al.Study on the Ectropis obliqua nucleopolyhedrovirus[J]. Chinese Journal of Biological Control, 1989, 5(4): 168-172.
[14] 殷坤山, 陈华才, 肖强, 等. 茶尺蠖核型多角体病毒制剂的试制与推广应用[J]. 中国病毒学, 2000, 15(1): 81-84.
Yin K S, Chen H C, Xiao Q, et al.The development, promotion and application of the Ectropis obliqua nucleopolyhedrovirus preparations[J]. Virologica Sinica, 2000, 15(1): 81-84.
[15] 席羽, 殷坤山, 肖强. 不同地理种群茶尺蠖对EoNPV的敏感性差异研究[J]. 茶叶科学, 2011, 31(2): 100-104.
Xi Y, Yin K S, Xiao Q.The susceptibility difference against EoNPV in different geographic populations of tea geometrid (Ectropic oblique prout)[J]. Journal of Tea Science, 2011, 31(2): 100-104.
[16] 席羽, 殷坤山, 唐美君, 等. 浙江茶尺蠖地理种群已分化成为不同种[J]. 昆虫学报, 2014, 57(9): 1117-1122.
Xi Y, Yin K S, Tang M J, et al.Geographic populations of the tea geometrid, Ectropis obliqua (Lepidoptera: Geometridae) in Zhejiang, eastern China have differentiated into different species[J]. Acta Entomologica Sinica, 2014, 57(9): 1117-1122.
[17] 唐美君, 郭华伟, 葛超美, 等. EoNPV对灰茶尺蠖的致病特性及高效毒株筛选[J]. 浙江农业学报, 2017, 29(10): 1686-1691.
Tang M J, Guo H W, Ge C M, et al.Pathogenic characters of Ectropis obliqua nucleopolyhedroviruses on Ectropis grisescens Warren and screening of high efficient strain[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1686-1691.
[18] 张海波, 王风良, 陈永明, 等. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究[J]. 植物保护, 2020, 46(2): 254-260.
Zhang H B, Wang F L, Chen Y M, et al.Study on the control effect of Nucleopolyhedrovirus on Spodoptera frugiperda[J]. Plant Protection, 2020, 46(2): 254-260.
[19] 张秀霞, 白婷婷, 毛晓红, 等. 4种微生物杀虫剂对甜菜夜蛾的室内毒力及田间防效评价[J]. 山东农业科学, 2020, 52(4): 141-145.
Zhang X X, Bai T T, Mao X H, et al.Toxicity test in laboratory and control efficacy in field of four microbial insecticides to Spodoptera exigua[J]. Shandong Agricultural Sciences, 2020, 52(4): 141-145.
[20] 白家赫, 王志博, 肖强. 浙江茶区茶尺蠖两近缘种的遗传分化及分布[J]. 昆虫学报, 2018, 61(6): 741-748.
Bai J H, Wang Z B, Xiao Q.Genetic differentiation and distribution of two sibling species of tea geometrids in tea-growing areas in Zhejiang, eastern China[J]. Acta Entomologica Sinica, 2018, 61(6): 741-748.
[21] Wang Z B, Bai J H, Liu Y J, et al.Transcriptomic analysis reveals insect hormone biosynthesis pathway involved in desynchronized development phenomenon in hybridized sibling species of tea geometrids (Ectropis grisescens and Ectropis obliqua)[J]. Insects, 2019, 10(11): 381. doi: 10.3390/insects10110381.
[22] Cory J S, Green B M, Paul R K, et al.Genotypic and phenotypic diversity of a baculovirus population within an individual insect host[J]. Journal of Invertebrate Pathology, 2005, 89(2): 101-111.
[23] Larem A, Ben-Tiba S, Wennmann J T, et al.Elucidating the genetic diversity of Phthorimaea operculella granulovirus (PhopGV)[J]. Journal of General Virology, 2019, 100(4): 679-690.
[24] Wennmann J T, Radtke P, Eberle K E, et al.Deciphering single nucleotide polymorphisms and evolutionary trends in isolates of the Cydia pomonella granulovirus[J]. Viruses, 2017, 9(8): 227. doi: 10.3390/v9080227.
[25] Loiseau V, Herniou E A, Moreau Y, et al.Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses[J]. Virus Evolution, 2020, 6(1): 60. doi: 10.1093/ve/vez060.
[26] Martin D W, Weber P C.DNA replication promotes high-frequency homologous recombination during Autographa californica multiple nuclear polyhedrosis virus infection[J]. Virology, 1997, 232(2): 300-309.
[27] Zwart M P, Ali G, Strien E A V, et al. Identification of loci associated with enhanced virulence in Spodoptera litura nucleopolyhedrovirus isolates using deep sequencing[J]. Viruses, 2019, 11(9): 872. doi: 10.3390/v11090872.
[28] Ali G, Abma-Henkens M H C, Werf W V D, et al. Genotype assembly, biological activity and adaptation of spatially separated isolates of Spodoptera litura nucleopolyhedrovirus[J]. Journal of Invertebrate Pathology, 2018, 153: 20-29.
[29] Maike B, Carstens E B.Sequential deletion of AcMNPV homologous regions leads to reductions in budded virus production and late protein expression[J]. Virus Research, 2018, 256: 125-133.
[30] Pearson M, Bjornson R, Pearson G, et al.The Autographa californica baculovirus genome: evidence for multiple replication origins[J]. Science, 1992, 257(5075): 1382-1384.
[31] Lin X, Chen Y, Yi Y, et al.Baculovirus immediately early 1, a mediator for homologous regions enhancer function in trans[J]. Virology Journal, 2010, 7(1): 32. doi: 10.1186/1743-422X-7-32.
[32] Carstens E B, Wu Y.No single homologous repeat region is essential for DNA replication of the baculovirus Autographa californica multiple nucleopolyhedrovirus[J]. Journal of General Virology, 2007, 88(1): 114-122.
[33] Nagai S, Alves C A F, Kobayashi M, et al. Comparative transient expression assay analysis of hycu-hr6- and IE1-dependent regulation of baculovirus gp64 early promoters in three insect cell lines[J]. Virus Research, 2011, 155(1): 83-90.
文章导航

/