欢迎访问《茶叶科学》,今天是
研究报告

贵州山区生态茶园不同凋落物木质素、纤维素分解特征

  • 刘莎茜 ,
  • 杨瑞 ,
  • 侯春兰 ,
  • 马觉兵 ,
  • 郭家瑞
展开
  • 贵州大学林学院,贵州贵阳 550025
刘莎茜,女,硕士研究生,主要从事森林经营方面研究,1187194779@qq.com。

收稿日期: 2021-04-09

  修回日期: 2021-05-24

  网络出版日期: 2021-10-12

基金资助

国家现代生态农业创新示范基地项目(091821104022292027-4)、贵州省科技计划项目(黔科合支撑[2020]1Y011号)

Decomposition Characteristics of Lignin and Cellulose in Different Litters of Ecological Tea Gardens in Mountainous Areas of Guizhou

  • LIU Shaqian ,
  • YANG Rui ,
  • HOU Chunlan ,
  • MA Juebing ,
  • GUO Jiarui
Expand
  • College of Forestry, Guizhou University, Guiyang 550025, China

Received date: 2021-04-09

  Revised date: 2021-05-24

  Online published: 2021-10-12

摘要

采用凋落物分解袋法,以贵州久安生态茶园内云南樟(Cinnamomum glanduliferum)、光皮桦(Betula luminifera)、杉木(Cunninghamia lanceolata)和马尾松(Pinus massoniana)叶凋落物以及茶树(Camellia sinensis)修剪物为研究对象,分析5种单一凋落物类型,以及9种混合凋落物类型(茶树-云南樟、茶树-马尾松、茶树-杉木、茶树-光皮桦、杉木-光皮桦、云南樟-光皮桦、云南樟-马尾松、云南樟-杉木、光皮桦-马尾松)分解速率和木质素、纤维素释放特征及差异性。结果表明,单一凋落物类型中,阔叶树种凋落物分解速率大于针叶树种;阔叶树种凋落物木质素含量总体上呈现增加趋势,而针叶树种总体上则呈现下降趋势;凋落物纤维素含量总体上呈现下降趋势。单一凋落物纤维素释放规律与混合凋落物纤维素释放一致,均为直接释放;单一凋落物木质素释放存在3种规律;混合凋落物木质素释放规律有5种。分析9种混合凋落物分解特征,44.4%的混合凋落物混合分解表现为加和效应,11.2%的混合分解表现为拮抗效应,44.4%的混合分解表现为协同效应;22.2%的混合凋落物木质素的释放表现为促进释放,55.6%的混合凋落物木质素释放表现为促进富集;22.2%的混合凋落物纤维素释放表现为促进释放;11.1%的混合凋落物纤维素释放表现为促进富集。研究结果可为维持茶园肥力提供理论依据。

本文引用格式

刘莎茜 , 杨瑞 , 侯春兰 , 马觉兵 , 郭家瑞 . 贵州山区生态茶园不同凋落物木质素、纤维素分解特征[J]. 茶叶科学, 2021 , 41(5) : 654 -668 . DOI: 10.13305/j.cnki.jts.2021.05.003

Abstract

The litter decomposition bag method was used to analyze the decomposition of five single litter types and nine mixed litter types in Guizhou Jiu'an Ecological Tea Garden with Cinnamomum glanduliferum, Betula luminifera, Cunninghamia lanceolata and Pinus massoniana leaf litters and Camellia sinensis trims as the research objects. The decomposition rate and release characteristics and differences of lignin and cellulose were studied. The results show that in a single type of litter, the litter decomposition rate of broad-leaved species was higher than that of coniferous species. The lignin content of litter of broad-leaved species showed an increasing trend. While that of coniferous species showed a downward trend as a whole. The content of cellulose in litter also showed a decreasing trend. According to the analysis of the release law of lignin and cellulose, both single litter release law and mixed litter cellulose release law were direct release. There were three release laws for single litter lignin, and 5 laws for mixed litter lignin. According to the analysis of the decomposition characteristics of 9 kinds of mixed litter, 44.4% of mixed litter decomposition showed additive effect, 11.2% mixed decomposition showed antagonistic effect, and 44.4% mixed decomposition showed synergistic effect. While 22.2% of mixed litter lignin release showed promoting release, and 55.6% mixed litter lignin release promoted the enrichment. A total of 11.1% of the mixed litter cellulose appeared to promote the enrichment, and 22.2% of the mixed litter cellulose was to promote the release. This study provided a theoretical basis for further maintaining the fertility in tea gardens.

参考文献

[1] 刘强, 彭少麟. 植物凋落物生态学[M]. 北京: 科学出版社, 2010: 1-3.
Liu Q, Peng S L.Plant Litter Ecology [M]. Beijing: Science Press, 2010: 1-3.
[2] Berg B, Berg M P, Bottner P, et al.Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality[J]. Biogeochemistry, 1993, 20(3): 127-159.
[3] Aerts R.Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikos, 1997, 79(3): 439-449.
[4] Edmonds R L, Thomas T B.Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest 9 Olympic National Park, Washington[J]. Canadian Journal of Forest Research, 1995, 25(7): 1049-1057.
[5] 张建利, 吴华, 喻理飞, 等. 草海湿地流域优势树种凋落物叶分解与水文特征研究[J]. 水土保持学报, 2014, 28(3): 98-103.
Zhang J L, Wu H, Yu L F, et al.Research on leaf litter decomposition and hydrological characteristics of dominant tree species in the Caohai Wetland Watershed[J]. Journal of Soil and Water Conservation, 2014, 28(3): 98-103.
[6] 蒲嘉霖, 刘亮. 亚热带森林凋落物分解特征及水文效应[J]. 水土保持研究, 2019, 26(6): 165-170.
Pu J L, Liu L.Hydrology functions and decomposition characteristics of litter in subtropical forest[J]. Research of Soil and Water Conservation, 2019, 26(6): 165-170.
[7] Osono T.Ecology of ligninolytic fungi associated with leaf litter decomposition[J]. Ecological Research, 2007, 22(6): 955-974.
[8] 马志良, 高顺, 杨万勤, 等. 亚热带常绿阔叶林区凋落叶木质素和纤维素在不同雨热季节的降解特征[J]. 生态学杂志, 2015, 34(1): 122-129.
Ma Z L, Gao S, Yang W Q, et al.Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest[J]. Chinese Journal of Ecology, 2015, 34(1): 122-129.
[9] Steffen K T, Cajthaml T, Anajdr J, et al.Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes[J]. Research in Microbiology, 2007, 158(5): 447-455.
[10] Thevenot M, Dignac M, Rumpel C.Fate of lignins in soils: a review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1200-1211.
[11] Boerjan W, Ralph J, Baucher M.Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519-546.
[12] 张海涛, 宫渊波, 付万权, 等. 川南马尾松低效人工林不同改造模式后枯落物持水特性分析[J]. 水土保持学报, 2016, 30(4): 136-141.
Zhang H T, Gong Y B, Fu W Q, et al.Water holding characteristics of litter under different transformation patterns of low efficiency Pinus massoniana Lamb. plantation in Southern Sichuan Province[J]. Journal of Soil and Water Conservation, 2016, 30(4): 136-141.
[13] 李鑫, 曾全超, 安韶山, 等. 黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究[J]. 环境科学, 2015, 36(3): 1084-1091.
Li X, Zeng Q C, An S S, et al.Ecological stoichiometric characteristics in leaf and litter under different vegetation types of Zhifanggou Watershed on the Loess Plateau, China[J]. Environmental Science, 2015, 36(3): 1084-1091.
[14] 孙志高, 刘景双, 于君宝, 等. 模拟湿地水分变化对小叶章枯落物分解及氮动态的影响[J]. 环境科学, 2008(8): 2081-2093.
Sun Z G, Liu J S, Yu J B, et al.Effects of simulated wetland water change on the decomposition and nitrogen dynamics of Calamagroustis angustifolia litter[J]. Environmental Science, 2008(8): 2081-2093.
[15] 廖周瑜, 惠阳, 王邵军, 等. 不同林龄云南松凋落叶分解及养分归还特征[J]. 生态环境学报, 2018, 27(11): 1981-1986.
Liao Z Y, Hui Y, Wang S J, et al.Leaf litter decomposition and nutrient return of Pinus yunnanensis at different forest ages[J]. Ecology and Environmental Sciences, 2018, 27(11): 1981-1986.
[16] 刘姝媛, 胡浪云, 储双双, 等. 3种林木凋落物分解特征及其对赤红壤酸度及养分含量的影响[J]. 植物资源与环境学报, 2013, 22(3): 11-17.
Liu S Y, Hu L Y, Chu S S, et al.Decomposition characteristics of three forest litters and their effects on acidity and nutrient content in lateritic red soil[J]. Journal of Plant Resources and Environment, 2013, 22(3): 11-17.
[17] 隆春艳. 不同土地利用类型下凋落物分解过程及其微生物学特征[D]. 北京: 中国科学院大学, 2020.
Long C Y.Litter decomposition process and their microbiological characteristics under different land use types [D]. Beijing: University of the Chinese Academy of Sciences, 2020.
[18] 谢婷婷, 刘明辉, 袁中勋, 等. 不同泥沙埋深对几种一年生草本枯落物分解及养分动态特征的影响[J]. 生态学报, 2020, 40(21): 7755-7766.
Xie T T, Liu M H, Yuan Z X, et al.Effects of different simulative sediment depths on litter decomposition and nutrient dynamic change of several annual herbaceous plants[J]. Acta Ecologica Sinica, 2020, 40(21): 7755-7766.
[19] 文海燕, 傅华, 郭丁. 黄土高原典型草原优势植物凋落物分解及养分释放对氮添加的响应[J]. 生态学报, 2017, 37(6): 2014-2022.
Wen H Y, Fu H, Guo D.Influence of nitrogen addition on Stipa bungeana and Heteropappus altaicus litter decomposition and nutrient release in a steppe located on the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(6): 2014-2022.
[20] 贾黎明, 方陆明, 胡延杰. 杨树刺槐混交林及纯林枯落叶分解[J]. 应用生态学报, 1998, 9(5): 463-467.
Jia L M, Fang L M, Hu Y J.Decomposition of leaf litter in pure and mixed stands of poplar and black locust[J]. Chinese Journal of Applied Ecology, 1998, 9(5): 463-467.
[21] 向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林凋落物分解过程中基质质量的变化[J]. 西北农林科技大学学报(自然科学版), 2015, 43(4): 65-72.
Xiang Y B, Huang C D, Hu T X, et al.Changes in masses of substrates during litter decomposition in Eucalyptus grandis plantations with different densities[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(4): 65-72.
[22] 李红俊, 高海力, 周卫青, 等. 千岛湖生态公益林主要树种凋落物分解及碳素动态变化研究[J]. 浙江林业科技, 2019, 39(6): 38-44.
Li H J, Gao H L, Zhou W Q, et al.Study on decomposition of litter and carbon dynamics of major tree species in ecological forest of Qiandao Lake[J]. Journal of Zhejiang Forestry Science and Technology, 2019, 39(6): 38-44.
[23] Olson J S.Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecological Society of America, 1963, 44(2): 322-331.
[24] Hoorens B, Aerts R, Stroetenga M.Does initial litter chemistry explain litter mixture effects on decomposition?[J]. Oecologia, 2003, 137(4): 578-586.
[25] Hättenschwiler S.Effects of tree species diversity on litter quality and decomposition[J]. Ecological Studies, 2005, 176: 149-164.
[26] 窦荣鹏. 亚热带9种主要森林植物凋落物的分解及碳循环对全球变暖的响应[D]. 杭州: 浙江农林大学, 2010.
Dou R P.The leaf litter decomposition and carbon cycle of nine main tree species in subtropical China and its responses to global warming [D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2010.
[27] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应[J]. 应用生态学报, 2007, 18(10): 2167-2172.
Song X G, Hu T X, Xian J R, et al.Responses of litter decomposition and nutrient release to simulated nitrogen deposition in an evergreen broad-leaved forest in Southwestern Sichuan[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2167-2172.
[28] 陈婷, 郗敏, 孔范龙, 等. 枯落物分解及其影响因素[J]. 生态学杂志, 2016, 35(7): 1927-1935.
Chen T, Xi M, Kong F L, et al.A review on litter decomposition and influence factors[J]. Chinese Journal of Ecology, 2016, 35(7): 1927-1935.
[29] 孙志高, 刘景双. 湿地枯落物分解及其对全球变化的响应[J]. 生态学报, 2007, 27(4): 1606-1618.
Sun Z G, Liu J S.Development in study of wetland litter decomposition and its responses to global change[J]. Acta Ecologica Sinica, 2007, 27(4): 1606-1618.
[30] 杨曾奖, 曾杰, 徐大平, 等. 森林枯枝落叶分解及其影响因素[J]. 生态环境, 2007, 16(2): 649-654.
Yang Z J, Zeng J, Xu D P, et al.The processes and dominant factors of forest litter decomposition: a review[J]. Ecology and Environmental Sciences, 2007, 16(2): 649-654.
[31] 杨晶晶. 极端干旱区不同生境下凋落物分解特征研究[D]. 阿拉尔: 塔里木大学, 2020.
Yang J J.Litter decomposition characteristics in different habitats in extreme arid area [D]. Alaer: Tarim University, 2020.
[32] 郭培培, 江洪, 余树全, 等. 亚热带6种针叶和阔叶树种凋落叶分解比较[J]. 应用与环境生物学报, 2009, 15(5): 655-659.
Guo P P, Jiang H, Yu S Q, et al.Comparison of litter decomposition of six species of coniferous and broad-leaved trees in subtropical China[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(5): 655-659.
[33] Swift M J, Heal O W, Anderson J M.Decomposition in terrestrial ecosystems[J]. Studies in Ecology, 1979, 5(14): 2772-2774.
[34] 杨林, 邓长春, 陈亚梅, 等. 川西高山林线交错带凋落叶分解速率与初始质量的关系[J]. 应用生态学报, 2015, 26(12): 3602-3610.
Yang L, Deng C C, Chen Y M, et al.Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3602-3610.
[35] 高海燕, 红梅, 霍利霞, 等. 外源氮输入和水分变化对荒漠草原凋落物分解的影响[J]. 应用生态学报, 2018, 29(10): 3167-3174.
Gao H Y, Hong M, Huo L X, et al.Effects of exogenous nitrogen input and water change on litter decomposition in a desert grassland[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3167-3174.
[36] Steffensen J P, Andersen K K, Bigler M, et al.High-resolution greenland ice core data show abrupt climate change happens in few years[J]. Science, 2008, 321(5889): 680-684.
[37] 郭绪虎, 肖德荣, 田昆, 等. 滇西北高原纳帕海湿地湖滨带优势植物生物量及其凋落物分解[J]. 生态学报, 2013, 33(5): 1425-1432.
Guo X H, Xiao D R, Tian K, et al.Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China[J]. Acta Ecologica Sinica, 2013, 33(5): 1425-1432.
[38] 路颖. 药乡林场优势树种叶片凋落物分解混合效应及主要影响因素分析[D]. 泰安: 山东农业大学, 2020.
Lu Y.Analysis of mixed effects of leaf litter decomposition and its main affecting factors of dominant tree species in Yaoxiang forest farm [D]. Taian: Shandong Agricultural University, 2020.
[39] 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977-4987.
Li Y N, Zhou X M, Zhang N L, et al.The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977-4987.
[40] Leroy C J, Marks J C.Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates[J]. Freshwater Biology, 2006, 51(4): 605-617.
[41] Gartner T B, Cardon Z G.Site of leaf origin affects how mixed litter decomposes[J]. Soil Biology and Biochemistry, 2006, 38(8): 2307-2317.
[42] Wardle D A, Bonner K I, Nicholson K S.Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function[J]. Oikos, 1997, 79(2): 247-258.
[43] Hättenschwiler S, Gasser P.Soil animals alter plant litter diversity effects on decomposition[J]. National Academy of Sciences, 2005, 102(5): 1519-1524.
[44] 袁亚玲, 张丹桔, 张艳, 等. 马尾松与阔叶树种凋落叶混合分解初期的酶活性[J]. 应用与环境生物学报, 2018, 24(3): 508-517.
Yuan Y L, Zhang D J, Zhang Y, et al.Enzyme activities in the early stage of mixed leaf litter decomposition from Pinus massoniana and broad-leaved tree species[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 508-517.
[45] 覃宇, 张丹桔, 李勋, 等. 马尾松与阔叶树种混合凋落叶分解过程中总酚和缩合单宁的变化[J]. 应用生态学报, 2018, 29(7): 2224-2232.
Qin Y, Zhang D J, Li X, et al.Changes of total phenols and condensed tannins during the decomposition of mixed leaf litter of Pinus massoniana and broad-leaved trees[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2224-2232.
文章导航

/