欢迎访问《茶叶科学》,今天是
研究报告

化学感受蛋白直系同源基因CSP8在茶尺蠖及近缘种灰茶尺蠖中的表达分析

  • 严玉婷 ,
  • 李玉杰 ,
  • 王倩 ,
  • 唐美君 ,
  • 郭华伟 ,
  • 李红亮 ,
  • 孙亮
展开
  • 1.中国计量大学生命科学学院/浙江省生物计量及检验检疫技术重点实验室,浙江 杭州 310018;
    2.中国农业科学院茶叶研究所/农业农村部茶叶质量安全控制实验室,浙江 杭州 310008;
    3.河南科技学院植物保护系,河南 新乡 453003;
    4.浙江农林大学农业与食品科学学院,浙江 杭州 311300
严玉婷,女,硕士研究生,主要从事昆虫生化与分子生物学方面的研究。

收稿日期: 2021-03-19

  修回日期: 2021-04-14

  网络出版日期: 2022-04-15

基金资助

中国科协青年人才托举工程项目(2018QNRC001)、中央级公益性科研院所基本科研业务费专项(1610212020001,1610212018010)、国家自然科学基金(31501652,31871977)

The Expression Profiles of Chemosensory Protein 8 Orthologs in Two Closely Related Tea Geometrid Species, Ectropis obliqua Prout and Ectropis grisescens Warren

  • YAN Yuting ,
  • LI Yujie ,
  • WANG Qian ,
  • TANG Meijun ,
  • GUO Huawei ,
  • LI Hongliang ,
  • SUN Liang
Expand
  • 1. College of Life Science, China Jiliang University/Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, Hangzhou 310018, China;
    2. Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang 453003, China;
    4. College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China

Received date: 2021-03-19

  Revised date: 2021-04-14

  Online published: 2022-04-15

摘要

化学感受蛋白(Chemosensory proteins,CSPs)在昆虫化学通讯及其他生理过程中发挥重要功能。茶尺蠖与其近缘种灰茶尺蠖是茶园重要鳞翅目害虫,对我国茶叶的安全生产造成严重危害。研究化学感受蛋白直系同源基因在茶尺蠖两近缘种间的表达,有助于研发同时针对该两种害虫的绿色防控技术。通过荧光定量qRT-PCR分析了EoblCSP8直系同源基因EgriCSP8在灰茶尺蠖中的表达分布。结果表明,EgriCSP8EoblCSP8具有保守的幼虫期高表达模式,EgriCSP8主要表达于灰茶尺蠖3龄幼虫头部。进一步比较Eobl-EgriCSP8在茶尺蠖两近缘种间的表达发现,EoblCSP8在茶尺蠖中的表达量显著高于EgriCSP8在灰茶尺蠖中的表达量。此外,还分析了沃尔巴克氏体菌(Wolbachia)及挥发物诱导对Eobl-EgriCSP8表达的影响,发现Wolbachia显著影响EgriCSP8在灰茶尺蠖中的表达。该结果证实Wolbachia参与调控昆虫CSPs基因的表达,为后续揭示Wolbachia介导CSPs表达,参与调控茶尺蠖两近缘种化学感受及与茶树的协同进化提供了新的研究思路。

本文引用格式

严玉婷 , 李玉杰 , 王倩 , 唐美君 , 郭华伟 , 李红亮 , 孙亮 . 化学感受蛋白直系同源基因CSP8在茶尺蠖及近缘种灰茶尺蠖中的表达分析[J]. 茶叶科学, 2022 , 42(2) : 200 -210 . DOI: 10.13305/j.cnki.jts.2022.02.007

Abstract

Chemosensory proteins (CSPs) play crucial roles in insect chemosensory and non-chemosensory processes. Ectropis obliqua Prout and its sibling species, Ectropis grisescens Warren are serious lepidopteran moth pests in tea gardens and they cause destructive damages to tea plants. The development of greener and environmentally friendly pest managements would benefit from orthologous CSPs’ investigation on the interaction between two Ectropis species and tea plants. This study mainly examined the expression profiles of EgriCSP8, the orthologs of EoblCSP8 in E. grisescens by using the real-time quantitative PCR experiment. The qRT-PCR results show that EgriCSP8 and EoblCSP8 had a conserved larvae-enriched expression pattern. EgriCSP8 was mainly expressed in the heads of the third instar of E. grisescens larvae. Next, the expression levels of CSP8 were compared between E. obliqua and E. grisescens. The results show that the expression level of EoblCSP8 in E. obliqua was higher than that of EgriCSP8 in E. grisescens. In addition, the effects of Wolbachia and tea plant volatiles on CSP8 expression levels in E. obliqua and E. grisescens were also estimated. The results show that the EgriCSP8 expression level declined significantly when Wolbachia was removed in E. grisescens, which provided the first evidence that the insect CSPs’ expression is associated with Wolbachia. These findings laid a foundation for the future studies on the molecular mechanisms of chemosensory and coevolution between the geometrid sibling species and tea plants.

参考文献

[1] Elgar M A, Zhang D, Wang Q, et al.Insect antennal morphology: the evolution of diverse solutions to odorant perception[J]. The Yale Journal of Biology and Medicine, 2018, 91: 457-469.
[2] Leal W S.Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58: 373-391.
[3] Angeli S, Ceron F, Scaloni A, et al.Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria[J]. European Journal of Biochemistry, 1999, 262: 745-754.
[4] Pelosi P, Iovinella I, Zhu J, et al.Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects[J]. Biological Reviews Cambridge Philosophical Society, 2018, 93: 184-200.
[5] Waris M I, Younas A, Adeel M M, et al.The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens[J]. Insect Science, 2020, 27(3): 531-544.
[6] Sun L, Zhou J J, Gu S H, et al.Chemosensillum immunolocalization and ligand specificity of chemosensory proteins in the alfalfa plant bug Adelphocoris lineolatus (Goeze)[J]. Scientific Reports, 2015, 5: 8073. doi: 10.1038/srep08073.
[7] Qiao H L, Deng P Y, Li D D, et al.Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori[J]. Journal of Insect Physiology, 2013, 59: 667-675.
[8] Xuan N, Guo X, Xie H Y, et al.Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins[J]. Insect Science, 2015, 22(2): 203-219.
[9] Guo W, Wang X H, Ma Z Y, et al.CSP and Takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust[J]. PLoS Genetics, 2011, 7: e1001291. doi: 10.1371/journal.pgen.1001291.
[10] Kitabayashi A N, Arai T, Kubo T, et al.Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach)[J]. Insect Biochemistry and Molecular Biology, 1998, 28(10): 785-790.
[11] Nomura A, Kawasaki K, Kubo T, et al.Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach)[J]. International Journal of Developmental Biology, 1992, 36(3): 391-398.
[12] Cheng D, Lu Y, Zeng L, et al.Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta[J]. Scientific Reports, 2015, 5: 9245.
[13] 唐美君, 王志博, 郭华伟, 等. 茶尺蠖和灰茶尺蠖幼虫及成虫的鉴别方法[J]. 植物保护, 2019, 45(4): 172-175.
Tang M J, Wang Z B, Guo H W, et al.An identification method for the adult and larva between the two sibling species Ectropis obliqua and Ectropis grisescens[J]. Plant Protection, 2019, 45(4): 172-175.
[14] Li Z Q, Cai X M, Luo Z X, et al.Geographical distribution of Ectropis grisescens (Lepidoptera: Geometridae) and Ectropis obliqua in China and description of an efficient identification method[J]. Journal of Economic Entomology, 2019, 11(1): 277-283.
[15] 白家赫, 王志博, 肖强. 浙江茶区茶尺蠖两近缘种的遗传分化及分布[J]. 昆虫学报, 2018, 61(6): 741-748.
Bai J H, Wang Z B, Xiao Q.Genetic differentiation and distribution of two sibling species of tea geometrids in tea-growing areas in Zhejiang, eastern China[J]. Acta Entomological Sinica, 2018, 61(6): 741-748.
[16] 白家赫, 唐美君, 殷坤山, 等. 灰茶尺蛾和小茶尺蠖两近缘种的生物学特性差异[J]. 浙江农业学报, 2018, 30(5): 797-803.
Bai J H, Tang M J, Yin K S, et al.Differential biological characteristics between closely related tea geometrid species, Ectropis obliqua and Ectropis grisescens[J]. Acta Agriculture Zhejiangensis, 2018, 30(5): 797-803.
[17] Zhang G H, Yuan Z J, Yin K S, et al.Asymmetrical reproductive interference between two sibling species of tea looper: Ectropis grisescens and Ectropis obliqua[J]. Bulletin of Entomological Research, 2016: 1-8. doi: 10.1017/s0007485316000602.
[18] Zhang G H, Yuan Z J, Zhang C, et al.Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding[J]. PLoS One, 2014, 9: e99373. doi: 10.1371/journal.pone.0099373.
[19] Luo Z X, Li Z Q, Cai X M, et al.Evidence of premating isolation between two sibling moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae)[J]. Journal of Economic Entomology, 2017, 110(6): 2364-2370.
[20] Wang Z B, Li H, Zhou X G, et al.Comparative characterization of microbiota between the sibling species of tea geometrid moth Ectropis obliqua Prout and E. grisescens Warren[J]. Bulletin of Entomological Research, 2020,110(6): 684-693.
[21] 王志博, 白家赫, 周孝贵, 等. 3种抗生素处理对灰茶尺蛾内生菌群的影响[J]. 茶叶科学, 2021, 41(1): 90-100.
Wang Z B, Bai J H, Zhou X G, et al.Effect of three antibiotic treatments on bacterial endosymbiont community of Ectropis grisescens Warren[J]. Journal of Tea Science, 2021, 41(1): 90-100.
[22] Sun L, Mao T F, Zhang Y X, et al.Characterization of candidate odorant-binding proteins and chemosensory proteins in the tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae)[J]. Archives of Insect Biochemistry and Physiology, 2017, 94(4): e21383. doi: 10.1002/arch.21383.
[23] 周孝贵, 付建玉, 刘守安, 等. 茶尺蠖和灰茶尺蠖内共生菌Wolbachia的分子检测及序列分析[J]. 应用昆虫学报, 2016, 53(4): 782-792.
Zhou X G, Fu J Y, Liu S A, et al.Molecular detection and sequence analysis of Wolbachia strains inEctropis obliqua and Ectropis grisescens (Lepidoptera: Geometridae)[J]. Chinese Journal of Applied Entomology, 2016, 53(4): 782-792.
[24] Jing T T, Zhang N, Gao T, et al.Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: a case study in Camellia sinensis[J]. Plant Cell and Environment, 2019, 42(4): 1352-1367.
[25] Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. Journal of Chemical Ecology, 2014, 40: 1080-1089.
[26] Sun L, Wang Q, Zhang Y, et al.Expression patterns and colocalization of two sensory neurone membrane proteins in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones[J]. Insect Molecular Biology, 2019, 28: 342-354.
[27] Pelosi P, Zhou J J, Ban L P, et al.Soluble proteins in insect chemical communication[J]. Cellular and Molecular Life Sciences, 2006, 63: 1658-1676.
[28] Zhang Y N, Ye Z F, Yang K, et al.Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles[J]. Gene, 2014, 536: 279-286.
[29] Gu S H, Wang S Y, Zhang X Y, et al.Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition[J]. PLoS One, 2012, 7: e42871. doi: 10.1371/journal.pone.0042871.
[30] Albert P J.Electrophysiological responses to sucrose from a gustatory sensillum on the larval maxillary palp of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae)[J]. Journal of Insect Physiology, 2003, 49(8): 733-738.
[31] del Campo M L, Miles C I. Chemosensory tuning to a host recognition cue in the facultative specialist larvae of the moth Manduca sexta[J]. Journal of Experimental Biology, 2003, 206: 3979-3990.
[32] Zacharuk R Y, Shields, V D.Sensilla of immature insects[J]. Annual Review of Entomology, 1991, 36: 331-354.
[33] 张方梅, 金银利, 张丽丽, 等. 灰茶尺蠖成虫触角及幼虫头部感器超微结构[J]. 昆虫学报, 2019, 62(6): 743-755.
Zhang F M, Jin Y L, Zhang L L, et al.Ultrastructure of the sensilla on adult antenna and larval head of Ectropis grisescens (Lepidoptera: Geometridae)[J]. Acta Entomological Sinica, 2019, 62(6): 743-755.
[34] Liu G X, Xuan N, Chu D, et al.Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1[J]. Archives of Insect Biochemistry and Physiology, 2014, 85(3): 137-151.
[35] Li H L, Tan J, Song X M, et al.Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function[J]. Biochemical and Biophysical Research Communications, 2017, 486(2): 391-397.
[36] Cai T W, Zhang Y H, Liu Y, et al.Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress[J]. Insect Science, 2021, 28: 355-362.
文章导航

/