欢迎访问《茶叶科学》,今天是
研究报告

双丙环虫酯对小贯小绿叶蝉的防治效果及残留评价

  • 郭明明 ,
  • 李兆群 ,
  • 刘岩 ,
  • 饶福强 ,
  • 俞嘉伟 ,
  • 吴鲁超 ,
  • 周利 ,
  • 陈宗懋
展开
  • 1.中国农业科学院茶叶研究所农产品质量安全研究中心,浙江 杭州 310008;
    2.中国农业科学院研究生院,北京 100081
郭明明,女,博士研究生,从事农药残留方面研究。

收稿日期: 2022-01-12

  修回日期: 2022-03-29

  网络出版日期: 2022-06-17

基金资助

国家重点研发计划(2021YFD1601100)、浙江省重点研发项目(2019C02033)、中国农业科学院创新工程(CAAS-ASTIP-TRICAAS)、财政部和农业农村部:国家现代农业产业技术体系(CARS-19)

The Control Efficiency of Afidopyropen to Tea Green Leafhoppers and Evaluation of Residue in Tea

  • GUO Mingming ,
  • LI Zhaoqun ,
  • LIU Yan ,
  • RAO Fuqiang ,
  • YU Jiawei ,
  • WU Luchao ,
  • ZHOU Li ,
  • CHEN Zongmao
Expand
  • 1. Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2022-01-12

  Revised date: 2022-03-29

  Online published: 2022-06-17

摘要

双丙环虫酯是一种由天然产物衍生而成的新型生物源杀虫剂,为明确其在茶园小贯小绿叶蝉防治中的应用效果,通过多地的药效试验和示范试验,综合分析了双丙环虫酯可分散液剂对小贯小绿叶蝉的防治效果和在茶叶中的残留情况。两个地区的药效试验结果表明,在有效成分用量为15.00 g·hm-2和22.50 g·hm-2剂量下,50 g·L-1双丙环虫酯可分散液剂药后1 d的防治效果为88.6%~93.4%,药后14 d为75.5%~85.5%,防治效果优于小贯小绿叶蝉的主要防治药剂虫螨腈,具有较好的速效性和持效性。在有效成分用量为18.75 g·hm-2剂量下,7个地区的示范试验结果显示,药后3 d的防治效果为88.9%~100.0%,药后14 d为60.2%~100.0%,防治效果优于当地常用防治药剂;药后7 d绿茶中双丙环虫酯的残留量在0.17~0.64 mg·kg-1,泡茶过程中双丙环虫酯从干茶到茶汤的浸出率为17.1%~19.1%;茶叶中双丙环虫酯残留的风险熵值远小于1,通过饮茶摄入双丙环虫酯引起的健康风险极低。因此,双丙环虫酯具有有效成分用量低、防治效果好、健康风险低等优点,适用于茶园小贯小绿叶蝉的抗性管理和综合治理。

本文引用格式

郭明明 , 李兆群 , 刘岩 , 饶福强 , 俞嘉伟 , 吴鲁超 , 周利 , 陈宗懋 . 双丙环虫酯对小贯小绿叶蝉的防治效果及残留评价[J]. 茶叶科学, 2022 , 42(3) : 358 -366 . DOI: 10.13305/j.cnki.jts.20220506.002

Abstract

Afidopyropen is a novel biogenic insecticide derived from the natural fermentation product. This study aimed to evaluate the feasibility of afidopyropen for tea green leafhoppers (Empoasca onukii Matsuda) control and tea safety after the application of afidopyropen in tea garden. The dosage field trials and demonstration trials were conducted to evaluate the control efficiency of afidopyropen to tea green leafhoppers and the terminal residues in tea. The results of the dosage field trials in 2 locations show that 50 g·L-1 afidopyropen dispersible concentrate was more effective against the green leafhoppers than chlorfenapyr which was commonly used pesticide for the green leafhoppers control. At the dosages of 15.00 g·hm-2 and 22.50 g·hm-2, control efficiencies were 88.6%-93.4% on the 1st day after treatment and 75.5%-85.5% on the 14th day, demonstrating a quick control effect and good persistence. At the dosage of 18.75 g·hm-2 in 7 locations, the control efficiencies were 88.9%-100.0% on the 3rd day after treatment, and 60.2%-100.0% on the 14th day, which were better than the local commonly used pesticides. The terminal residues of afidopyropen in green tea ranged from 0.17-0.64 mg·kg-1 on the 7th day after the application, the leaching rate of afidopyropen from dry tea to tea brew ranged from 17.1%-19.1% during the brewing process, and the risk quotient values were far less than 1, indicating a very low health risk caused by the afidopyropen intake through drinking tea. In conclusion, afidopyropen is suitable for resistance management and comprehensive management of tea green leafhoppers with the advantages of low dosage, high-efficiency and low-healthy risk for tea consumer.

参考文献

[1] 孟召娜, 边磊, 罗宗秀, 等. 全国主产茶区茶树小绿叶蝉种类鉴定及分析[J]. 应用昆虫学报, 2018, 55(3): 514-526.
Meng Z N, Bian L, Luo Z X, et al.Taxonomic revision and analysis of the green tea leafhopper species in China's main tea production area[J]. Chinese Journal of Applied Entomology, 2018, 55(3): 514-526.
[2] 赵冬香, 陈宗懋, 程家安. 茶小绿叶蝉优势种的归属[J]. 茶叶科学, 2000, 20(2): 101-104.
Zhao D X, Chen Z M, Cheng J A.Belongingness of tea leafhopper dominant species[J]. Journal of Tea Science, 2000, 20(2): 101-104.
[3] 杨洁. 三种农药在茶树上的残留归趋及对茶小绿叶蝉防治效果研究[D]. 北京: 中国农业科学院, 2020.
Yang J.Residual fate of three pesticides on tea plants and control effect of tea leafhopper, Empoasca onukii matsuda [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[4] 罗宗秀, 苏亮, 陈宗懋. 茶园农药须注意更新换代[J]. 中国茶叶, 2018, 40(3): 36-38.
Luo Z X, Su L, Chen Z M.Pay attention to the replacement of pesticides in the tea garden[J]. China Tea, 2018, 40(3): 36-38.
[5] 李良德, 王定锋, 吴光远, 等. 福建省3个地区茶小绿叶蝉对5种常用农药的抗药性比较[J]. 茶叶学报, 2020, 61(3): 133-137.
Li L D, Wang D F, Wu G Y, et al.Insecticide resistance on five common pesticides of Empoasca flavescens in Fujian tea growing areas[J]. Acta Tea Sinica, 2020, 61(3): 133-137.
[6] Leichter C A, Thompson N, Johnson B R, et al.The high potency of ME-5343 to aphids is due to a unique mechanism of action[J]. Pesticide Biochemistry and Physiology, 2013, 107(2): 169-176.
[7] Kandasamy R, London D, Stam L, et al.Afidopyropen: new and potent modulator of insect transient receptor potential channels[J]. Insect Biochemistry and Molecular Biology, 2017, 84: 32-39.
[8] Insecticide Resistance Action Committee. IRAC Mode of Action Classification Scheme (Version 10.1) [EB/OL]. [2022-1-13]. https://irac-online.org/afidopyropen-has-been-added-to-the-moa-classification-as-group-9d/.
[9] 谭海军. 新型生物源杀虫剂双丙环虫酯[J]. 世界农药, 2019, 41(2): 61-64.
Tan H J.The novel biological insecticide afidopyropen[J]. World Pesticides, 2019, 41(2): 61-64.
[10] 陈敏, 栾炳辉, 姜法祥, 等. 新型杀虫剂双丙环虫酯对黄瓜蚜虫的田间防效[J]. 农药, 2018, 57(3): 215-216, 231.
Chen M, Luan B H, Jiang F X, et al.Field efficacy trials of afidopyropen against Aphidoidea[J]. Agrochemicals, 2018, 57(3): 215-216, 231.
[11] 翟浩, 张勇, 李晓军, 等. 不同杀虫剂对苹果黄蚜的田间防控效果[J]. 安徽农业科学, 2018, 46(1): 143-145.
Zhai H, Zhang Y, Li X J, et al.Field efficacy of several insecticides on Aphis citricola van der Goot[J]. Journal of Anhui Agricultural Sciences, 2018, 46(1): 143-145.
[12] 瞿燕, 黄亚川, 张皛, 等. 几种药剂防治西瓜蚜虫田间药效试验[J]. 上海蔬菜, 2020(5): 77-78.
Qu Y, Huang Y C, Zhang X, et al.Field efficacy of several pesticides against watermelon aphids[J]. Shanghai Vegetables, 2020(5): 77-78.
[13] FAO. Guidance document on risk assessment using brew factor for fixation of MRLs of pesticides in tea [EB/OL]. [2022-2-24]. http://www.fao.org/fileadmin/templates/est/meetings/tea_may14/ISM-14-3-Brew_Policy.pdf.
[14] Li H X, Zhong Q, Wang X R, et al.The degradation and metabolism of chlorfluazuron and flonicamid in tea: a risk assessment from tea garden to cup[J]. Science of The Total Environment, 2021, 754: 142070. doi: 10.1016/j.scitotenv.2020.142070.
[15] Xie J, Zheng Y X, Liu X G, et al.Human health safety studies of a new insecticide: dissipation kinetics and dietary risk assessment of afidopyropen and one of its metabolites in cucumber and nectarine[J]. Regulatory Toxicology and Pharmacology, 2019, 103: 150-157.
[16] Chen K Y, Liu X G, Wu X H, et al.Simultaneous determination of afidopyropen and its metabolite in vegetables, fruit and soil using UHPLC-MS/MS[J]. Food Additives and Contaminants: Part A, 2018, 35(4): 715-722.
[17] Chen Y J, Guo M C, Liu X G, et al.Determination and dissipation of afidopyropen and its metabolite in wheat and soil using QuEChERS-UHPLC-MS/MS[J]. Journal of Separation Science, 2017, 41(7): 1674-1681.
[18] Hou X A, Qiao T, Zhao Y L, et al.Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field[J]. Ecotoxicology and Environmental Safety, 2019, 180: 227-233.
[19] Kanrar B, Mandal S, Bhattacharyya A.Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(12): 1926-1933.
[20] Wang X R, Zhang X Z, Wang Z H, et al.Dissipation behavior and risk assessment of tolfenpyrad from tea bushes to consuming[J]. The Science of the Total Environment, 2021, 806: 150771. doi: 10.1016/j.scitotenv.2021.150771.
[21] Bai A J, Chen A, Chen W Y, et al.Residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and its metabolites during tea growing and tea brewing[J]. Journal of the Science of Food and Agriculture, 2021, 101(14): 5992-6000.
[22] Xia H, Ma X, Tu Y.Comparison of the relative dissipation rates of endosulfan pesticide residues between oolong and green tea[J]. Food Additives and Contaminants: Part A, 2008, 25(1): 70-75.
[23] Chen Z M, Wan H B.Factors affecting residues of pesticides in tea[J]. Pesticide Science, 1988, 23(2): 109-118.
[24] Gupta M, Shanker A.Persistence of acetamiprid in tea and its transfer from made tea to infusion[J]. Food Chemistry, 2008, 111(4): 805-810.
[25] Sood C, Jaggi S, Kumar V, et al.How manufacturing processes affect the level of pesticide residues in tea[J]. Journal of the Science of Food and Agriculture, 2004, 84(15): 2123-2127.
[26] Manikandan N, Seenivasa S, Ganapathy M N K, et al. Leaching of pesticides in tea brew[J]. Journal of Agricultural and Food Chemistry, 2001, 49(11): 5479-5483.
[27] Wang X R, Zhou L, Zhang X Z, et al.Transfer of pesticide residue during tea brewing: understanding the effects of pesticide's physico-chemical parameters on its transfer behavior[J]. Food Research International, 2019, 121: 776-784.
[28] Chen H P, Pan M L, Pan R, et al.Transfer rates of 19 typical pesticides and the relationship with their physicochemical property[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2): 723-730.
[29] Hou R Y, Hu J F, Qian X S, et al.Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea[J]. Food Additives and Contaminants: Part A, 2013, 30(10): 1761-1769.
[30] Yu H, Sun H Z, Wang X R, et al.Residue behavior and safety evaluation of pymetrozine in tea[J]. Journal of the Science of Food and Agriculture, 2021, 101(10): 4118-4124.
[31] FAO, WHO. Pesticide residues in food2019-report 2019-joint FAO/WHO meeting on pesticide residues [EB/OL]. [2022-2-24]. https://www.fao.org/3/ca7455en/ca7455en.pdf.
文章导航

/