为研究小檗碱在茶炭疽菌(Colletotrichum)引起的茶树叶部病害防治中的应用前景,以松针炭疽菌(C. fioriniae)、喀斯特炭疽菌(C. karstii)、重庆炭疽菌(C. chongqingense)、山茶炭疽菌(C. camelliae)和胶孢炭疽菌(C. gloeosporioides)5种不同茶炭疽菌为研究对象,研究了小檗碱对不同炭疽菌的抑菌活性,并比较了其抑菌活性差异。研究结果表明,小檗碱对C. camelliae和C. chongqinggense的抑制效果最好,在质量浓度为12 mg·mL-1时达到100%抑菌率,其次是C. gloeosporioides、C. karstii和C. fioriniae,其抑菌中浓度(Concentration for 50% of maximal effect,EC50)分别为2.828、3.288、4.164、4.778、5.104 mg·mL-1。显微镜镜检发现,小檗碱对5种炭疽菌的菌丝和分生孢子均存在明显影响,随小檗碱浓度的增加,部分菌丝出现不规则膨大现象,分生孢子形态也出现扭曲变形;生物活性检测发现,小檗碱处理后,不同炭疽菌的细胞结构均出现不同程度损伤,细胞膜的通透性增大、细胞氧化应激反应增强。研究结果明确了小檗碱对茶树炭疽菌的抑菌活性及应用前景,为炭疽菌引起的茶树病害的防治提供了新的途径及理论依据。
To explore the application prospects of berberine on the prevention and control of tea diseases, the antifungal activity of berberine against five different Colletotrichum species (C. fioriniae, C. karstii, C. chongqinggense, C. camelliae and C. gloeosporioides) were studied and the differences in antifungal activities were compared. The results show that berberine has the best inhibitory effect on both C. camelliae and C. chongqinggense, reaching 100% at the concentration of 12 mg·mL-1, followed by C. gloeosporioides, C. karstii and C. fioriniae. The EC50 (Concentration for 50% of maximal effect) of the five Colletotrichum species were 2.828, 3.288, 4.164, 4.778 mg·mL-1 and 5.104 mg·mL-1, respectively. The conidial and hyphal morphology of five Colletotrichum species under the treatment of berberine were examined, showing that berberine had a significant impact on the mycelial and conidial growth of five Colletotrichum species. With the increase of berberine concentration, part of hyphae expanded irregularly and the conidia grew abnormally. Results of the biological activity of Colletotrichum species show that the cell structure was damaged, the permeability of cell membrane was increased and the cell oxidative stress response was enhanced. Results of this study firstly confirm the antifungal activity and application prospects of berberine against Colletotrichum species, which provided a new approach and theoretical basis for the prevention and control of tea disease caused by Colletotrichum.
[1] Wan Y H, Zou L J, Zeng L, et al.A new Colletotrichum species associated with brown blight disease on Camellia sinensis[J]. Plant Disease, 2021, 105(5): 1474-1481.
[2] 刘威. 茶树炭疽病的病原鉴定及其遗传多样性分析[M]. 福建: 福建农林大学, 2013.
Liu W.Anthracnose pathogens identification and the genetic diversity of tea plant[M]. Fujian: Fujian Agriculture and Forestry University, 2013.
[3] Wang Y C, Hao X Y, Wang L, et al.Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China[J]. Scientific Reports, 2016, 6: 35287. doi: 10.1038/srep35287.
[4] 斯琴格日乐, 恩德, 李英杰. 苦瓜果实中盐酸小檗碱的提取工艺[J]. 光谱实验室, 2013, 30(6): 3335-3339.
Si Q G, En D, Li Y J.Extraction process of berberine hydrochloride in the bitter melon fruit[J]. Spectroscopic Laboratory, 2013, 30(6): 3335-3339.
[5] 刘金荣. 小檗碱对两种重要植物病原真菌的抑制作用及其烟剂的研制[M]. 北京: 北京化工大学, 2020.
Liu J R.Inhibitory effect of berberine on two important plant pathogenic fungi and preparation of berberinr fumigant[M]. Beijing: Beijing University of Chemical Technology, 2020.
[6] 张一波. 黄连素降血糖及防治糖尿病慢性并发症的作用和机制[J]. 中国中医药信息杂志, 2003, 10(1): 83-85.
Zhang Y B.The role and mechanism of berberine in lowering blood sugar and preventing chronic complications of diabetes[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2003, 10(1): 83-85.
[7] 王如意. 植物源药物筛选及小檗碱抑制番茄早疫病菌作用机制的研究[M]. 北京: 北京化工大学, 2015.
Wang R Y.Screening of plant derived fungicides and dessection of the mechanisms of berberine inhibiting Alternaria altenata[M]. Beijing: Beijing University of Chemical Technology, 2015.
[8] Chen L H, Bu Q Q, Xu H, et al. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro [J]. Microbiological Research, 2016, l86/l87: 44-51.
[9] Yu H H, Kim K J, Cha J D, et al.Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus[J]. Journal of Medicinal Food, 2005, 8(4): 454-461.
[10] Issat T, Jakóbisiak M, Golab J.Berberine, a natural cholesterol reducing product, exerts antitumor cytostatic/cytotoxlc effects independently from the mevalonate pathway[J]. Oncology Reports, 2006, 16(6): 1273-1276.
[11] Chen Y J, Tong H R, Wei X, et al.First report of brown blight disease on Camellia sinensis caused by Colletotrichum acutatum in China[J]. Plant Disease, 2016, 100(1): 227-228.
[12] Chen Y J, Qiao W J, Zeng L, et al.Characterization, pathogenicity and phylogenetic analyses of Colletotrichum species associated with brown blight disease on Camellia sinensis in China[J]. Plant Disease, 2017, 101(6): 1022-1028.
[13] 白宝璋, 汤学军. 植物生理学测试技术[M]. 北京: 中国科学技术出版社, 1993.
Bai B Z, Tang X J.Plant physiology testing technology [M]. Beijing: Science and Technology of China Press, 1993.
[14] Tirkey N, Pilkhwal S, Kuhad A, et al.Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney[J]. BMC Pharmacology, 2005, 5(1): 1-8.
[15] 林琳, 高智谋, 高同春, 等. 浓度95%小蘖碱对2种辣椒炭疽病的防治效果[J]. 安徽农业科学, 2011, 39(20): 12190-12191.
Lin L, Gao Z M, Gao T C, et al.Control effectiveness of 95% berberine on two pepper anthracnose fungi[J]. Anhui Agricultural Science, 2011, 39(20): 12190-12191.
[16] 陈立, 徐汉虹, 赵善欢. 获取复配农药最佳增效配方的一种简易方法[J]. 生物数学学报, 2001, 16(4): 456-461.
Chen L, Xu H H, Zhao S H.A simple method to obtain the optimal synergistic mixture ratio of combined pesticides[J]. Journal of Biomathematics, 2001, 16(4): 456-461.
[17] Liu X, Li L.Synergistic interaction of fungicides in mixtures[J]. Pesticide Science & Administration, 2002, 86(11): 1273-1279.
[18] Böttcher T, Pitscheider M, Sieber S A.ChemInform abstract: natural products and their biological targets: proteomic and metabolomics labeling strategies[J]. Angewandte Chemic-International Edition, 2010, 41(29): 2680-2698.
[19] Ong S E, Schenone M, Margolin A, et al.Identifying the proteins to which small-molecule probes and drugs bind in cells[J]. PNAS, 2009, 106(12): 4617-4628.