欢迎访问《茶叶科学》,今天是
研究报告

茶多酚对农杆菌介导的植物遗传转化体系的影响

  • 李晶 ,
  • 林彩容 ,
  • 黄艳 ,
  • 邓旭铭 ,
  • 王艺清 ,
  • 孙威江
展开
  • 1.福建农林大学园艺学院,福建 福州 350002;
    2.福建农林大学安溪茶学院,福建 泉州 362400;
    3.福建省茶产业工程技术研究中心,福建 福州 350002;
    4.海峡两岸特色作物安全生产省部共建协同创新中心,福建 福州 350002
李晶,女,硕士研究生,主要从事茶树栽培育种与生物技术研究。

收稿日期: 2021-12-30

  修回日期: 2022-03-29

  网络出版日期: 2022-08-23

基金资助

国家自然科学基金(31770732)、福建省高校产学合作项目(2019N5007)、福建主要茶类原产地溯源与标准体系研究(K1520005A04)、福建张天福茶叶发展基金会科技创新基金(FJZTF01)

Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System

  • LI Jing ,
  • LIN Cairong ,
  • HUANG Yan ,
  • DENG Xuming ,
  • WANG Yiqing ,
  • SUN Weijang
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China;
    3. Fujian Tea Industry Engineering Technology Research Center, Fuzhou 350002, China;
    4. Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2021-12-30

  Revised date: 2022-03-29

  Online published: 2022-08-23

摘要

为研究在农杆菌介导的茶树遗传体系中,茶多酚对农杆菌侵染效率的影响,以LBA4404、EHA105、ATCC15834和K599 4个农杆菌菌株为研究对象,分析其在不同浓度茶多酚处理下的耐酚能力、被膜完整率、吸附性、virchv基因表达,以及遗传转化差异。结果显示,4个菌株的耐酚能力依次为LBA4404>K599>EHA105>ATCC15834,其中EHA105和ATCC15834菌株对茶多酚较为敏感;ATCC15834菌株被膜完整率与茶多酚的浓度、静置时间呈负相关,EHA105在600 mg·L-1茶多酚处理48 h后,其被膜完整率最低;ATCC15834和EHA105对烟草叶肉细胞的吸附能力随着茶多酚浓度的升高而降低,在经茶多酚处理24 h后,ATCC15834中chvB和EHA105中chvB2的表达受到显著抑制,virA表达量与低浓度酚类的敏感性呈正相关性;烟草经农杆菌菌液(含茶多酚)侵染后,瞬时转化效率和稳定转化效率均受到不同程度的抑制,发状根诱导率大大降低。1 000 mg·L-1茶多酚处理后,ATCC15834的发根诱导率最低,仅为13.85%,坏死率高达33.85%。综上所述,茶多酚会降低农杆菌活力和被膜完整率,chv基因通过降低表达量影响其吸附性,最终导致烟草转化体系中瞬时转化效率和稳定转化效率均受到不同程度的抑制。

本文引用格式

李晶 , 林彩容 , 黄艳 , 邓旭铭 , 王艺清 , 孙威江 . 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022 , 42(4) : 477 -490 . DOI: 10.13305/j.cnki.jts.2022.04.003

Abstract

In order to study the effect of tea polyphenols on the infection efficiency of Agrobacterium in tea plant genetic system mediated by Agrobacterium tumefaciens, four Agrobacterium strains LBA4404, EHA105, ATCC15834 and K599 were used as research objects. The phenolic resistance, membrane integrity, adsorption, vir gene and chv gene expression and genetic transformation of Agrobacterium tumefaciens under different concentrations of tea polyphenols were analyzed. The results show that: (1) the phenolic resistance of the four strains followed the order of LBA4404>K599>EHA105>ATCC15834, and EHA105 and ATCC15834 were more sensitive to tea polyphenols. (2) The ratio of ATCC15834 with intact membrane was negatively correlated with the concentration of tea polyphenols and the standing time, and the lowest intact membrane rate of EHA105 appeared 48 h after treatment with 600 mg·L-1 tea polyphenols. (3) The adsorption capacities of ATCC15834 and EHA105 on tobacco mesophyll cells decreased with the increase of tea polyphenol concentrations. After treatment with tea polyphenols for 24 h, the expressions of chvB and chvB2 in ATCC15834 and EHA105 were significantly inhibited. The expression of virA was positively correlated with the sensitivity to low concentration phenols. (4) After infecting tobacco by the Agrobacterium tumefaciens solution (containing tea polyphenols), the transient and stable transformation efficiencies were inhibited to varying degrees, and the induction rate of hairy roots was greatly reduced. When the concentration of tea polyphenols was 1 000 mg·L-1, ATCC15834 achieved the lowest root induction rate of 13.85% and the highest necrosis rate of 33.85%. In conclusion, tea polyphenols could reduce the activity and membrane integrity rate of Agrobacterium tumefaciens, and reduce the expression of chv gene to affect its adsorption, which finally suppress the instantaneous conversion efficiency and the stable conversion efficiency in tobacco conversion system to varying degrees.

参考文献

[1] 仝佳音, 杨毅坚, 杨方慧, 等. 紫娟茶花青素对“三高”的影响及其开发利用[J]. 安徽农业科学, 2018, 46(10): 39-41.
Tong J Y, Yang Y J, Yang F H, et al.Influence of anthocyanins of Zijuan tea on hypertension, hyperlipidemia and hyperglycemia and its development and utilization[J]. Journal of Anhui Agricultural Sciences, 2018, 46(10): 39-41.
[2] 潘卫仓. 茶多酚的功效及提取工艺研究进展[J]. 甘肃科技, 2011, 27(15): 57-58.
Pan W C.Research Progress on the efficacy and extraction technology of tea polyphenols[J]. Gansu Science and Technology, 2011, 27(15): 57-58.
[3] Cabrera C, Gimenez R, Lopez M C.Determination of tea components with antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4427-4435.
[4] Chan E W C, Soh E Y, Tie P P, et al. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis[J]. Pharmacognosy Research, 2011, 3(4): 266-272.
[5] Souissi M, Ben Lagha A, Chaieb K, et al.Effect of a berry polyphenolic fraction on biofilm formation, adherence properties and gene expression of streptococcus mutans and its biocompatibility with oral epithelial cells[J]. Antibiotics, 2021, 10(1): 46. doi: 10.3390/antibiotics10010046.
[6] 李柯欣. 茶多酚的提取、抑菌作用与抑菌机理研究[D]. 成都: 西华大学, 2017.
Li K X.Study on extraction, bacteriostasis and bacteriostatic mechanism of tea polyphenols [D]. Chengdu: Xihua University, 2017.
[7] Bhattacharya A, Sood P, Citovsky V.The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705-719.
[8] Matsumoto S, Fukui M.Effect of acetosyringone application on Agrobacterium-mediated gene transfer in tea plant(Camellia sinensis)[J]. Bulletin of the National Research Institute of Vegetables, Ornamental Plants and Tea (Japan), 1999(14): 9-15.
[9] Mondal T, Bhattacharya A, Ahuja P, et al.Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos[J]. Plant Cell Reports, 2001, 20(8): 712-720.
[10] 耿立召, 刘传亮, 李付广. 农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J]. 西北植物学报, 2005, 25(1): 205-210.
Geng L Z, Liu C L, Li F G.Application of the combination of Agrobacterium-mediated transformation and particle bombardment in plant genetic transformation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(1): 205-210.
[11] 张海平. 棉花转基因体系的优化和抗黄萎病基因的转化[D]. 杭州: 浙江大学, 2008.
Zhang H P.Optimization of cotton transformation system and the transformation of resistant gene to Verticillium wilt [D]. Hangzhou: Zhejiang University, 2008.
[12] 刘水平. 野生茄子托鲁巴姆黄萎病抗性相关基因StoVe1功能鉴定[D]. 南京: 南京农业大学, 2011.
Li S P.Functional analysis of Solanum torvum StoVe1 gene related to Verticillium wilt resistance [D]. Nanjing: Nanjing Agricultural University, 2011.
[13] 叶兴国, 陈明, 杜丽璞, 等. 小麦转基因方法及其评述[J]. 遗传, 2011, 33(5): 422-430.
Ye X G, Chen M, Du L P, et al.Description and evaluation of transformation approaches used in wheat[J]. Hereditas, 2011, 33(5): 422-430.
[14] 尹中朝, 李宝健, 施骏, 等. 存在水稻中新型农杆菌毒性区基因的信号分子[J]. 科学通报, 1995, 40(12): 1126-1128.
Yin Z C, Li B J, Shi J, et al.There are signaling molecules for genes in the toxic region of novel Agrobacterium in rice[J]. Chinese Science Bulletin, 1995, 40(12): 1126-1128.
[15] Bhattacharya A, Sood P, Citovsky V.The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705-719.
[16] Cabrera C, Gimenez R, Lopez M C.Determination of tea components with antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4427-4435.
[17] Chan E W C, Soh E Y, Tie P P, et al. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis[J]. Pharmacognosy Research, 2011, 3(4): 266-272.
[18] 杨海伦, 刘小香, 朱军莉, 等. 茶多酚的抗菌特性研究进展[J]. 食品工业科技, 2015, 36(21): 385-389.
Yang H L, Liu X X, Zhu J L, et al.Research progress in antibacterial properties of tea polyphenols[J]. Science and Technology of Food Industry, 2015, 36(21): 385-389.
[19] Sharma A, Gupta S, Sarethy I P, et al.Green tea extract: possible mechanism and antibacterial activity on skin pathogens[J]. Food Chemistry, 2012, 135(2): 672-675.
[20] 陈琛, 徐尤美, 蔺蓓蓓, 等. 秦岭绿茶茶多酚抑菌活性及其机理研究[J]. 四川农业大学学报, 2019, 37(6): 821-827.
Chen C, Xu Y M, Lin B B, et al.Antibacterial activity and mechanism of green tea polyphenols from qinling mountains[J]. Journal of Sichuan Agricultural University, 2019, 37(6): 821-827.
[21] Gonzalez-Rivera C, Khara P, Awad D, et al.Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer[J]. Molecular Microbiology, 2019, 111(1): 96-117.
[22] Matthysse A G.Attachment of Agrobacterium to plant surfaces[J]. Frontiers in Plant Science, 2014, 5: 252. doi: 10.3389/fpls.2014.00252.
[23] 王戈亮. 植物油脂积累机理和品质改良: 1.利用RNAi改良大豆油脂品质;2.四合木茎积累三脂酰甘油特征[D]. 北京: 中国科学院植物研究所, 2007.
Wang G L.Vegetable oil accumulation mechanism and quality improvement: 1. The improvement of soybean oil quafity using RNAi; 2. Triacylglycerols in stems of Tetraena mongolica [D]. Beijing: Institute of Botany, the Chinese Academy of Sciences, 2007.
[24] 宋大鹏. 儿茶素对农杆菌介导的茶树遗传转化的影响[D]. 合肥: 安徽农业大学, 2014.
Song D P.Effects of catechins on Agrobacterium-mediated gene transformation of Camellia sinensis [D]. Hefei: Anhui Agricultural University, 2014.
[25] 毛清黎, 施兆鹏, 李玲, 等. 茶叶儿茶素对发根农杆菌的抑制作用及抗酚菌株筛选研究[J]. 茶叶科学, 2007, 27(3): 243-247.
Mao Q L, Shi Z P, Li L, et al.Study on inhibitation of Agrobacterium rhizogenes by tea catechin and screening of anti-polyphenol strain[J]. Journal of Tea Science, 2007, 27(3): 243-247.
[26] 仓梅芹, 周健, 成浩, 等. 几种农杆菌的耐酚性能比较与驯化研究[J]. 茶叶科学, 2008, 28(3): 189-194.
Cang M Q, Zhou J, Cheng H, et al.Studies on polyphenol-resisting characteristics of several kinds of Agrobacterium and the demestication of polyphenol-resisting strain[J]. Journal of Tea Science, 2008, 28(3): 189-194.
[27] Alshuniaber M A, Krishnamoorthy R, Alqhtani W H.Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens[J]. Saudi Journal of Biological Sciences, 2021, 28(1):459-464.
[28] Kuo C Y, Zupko I, Chang F R, et al.Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway[J]. Toxicology and Applied Pharmacology, 2016, 311: 99-105.
[29] 姜鹏. Vibrio sp.QY101胞外多糖的分离纯化及抗细菌生物被膜活性研究[D]. 山东: 中国海洋大学, 2011.
Jang P.The studies on isolation, purification and antibiofilm activities of the exopolysaccharide from Vibrio sp. QY101 [D]. Shandong: Ocean University of China, 2011.
[30] Sharma A, Gupta S, Sarethy I P, et al.Green tea extract: possible mechanism and antibacterial activity on skin pathogens[J]. Food Chemistry, 2012, 135(2): 672-675.
[31] 王根平, 张婷, 师志刚, 等. 农杆菌T-DNA传递相关基因研究进展[J]. 分子植物育种, 2017, 15(5): 1752-1761.
Wang G P, Zhang T, Shi Z G, et al.Research progress on T-DNA transfer related genes mediated of Agrobacterium[J]. Molecular Plant Breeding, 2017, 15(5): 1752-1761.
[32] 刘红. 枇杷花药愈伤组织诱导及褐化机理和控制方法研究[D]. 成都: 四川农业大学, 2016.
Li H.Studies on callus induction and mechanism of browning and control methods in loquat [D]. Chengdu: Sichuan Agricultural University, 2016.
文章导航

/