欢迎访问《茶叶科学》,今天是
研究报告

茶树根系耐铝促生内生细菌的分离鉴定及其特性研究

  • 武警 ,
  • 陈楠楠 ,
  • 韩梦琳 ,
  • 陈高 ,
  • 厉伟伟 ,
  • 张蜀香 ,
  • 蒋晓岚
展开
  • 1.安徽农业大学茶树生物学与资源利用国家重点实验室,安徽 合肥 230036;
    2.安徽农业大学生命科学学院,安徽 合肥 230036
武警,女,在校本科生,主要从事茶树次生代谢及生理生态方面的研究。

收稿日期: 2021-12-12

  修回日期: 2022-01-07

  网络出版日期: 2022-10-28

基金资助

安徽省大学生创新训练项目(S202010364005)、国家自然科学青年基金(31902069)、安徽省科协2020年青年科技人才托举计划(RCTJ202010)

Isolation, Identification and Characterization of Aluminum-tolerant Growth-promoting Endophytic Bacteria in Tea Roots

  • WU Jing ,
  • CHEN Nannan ,
  • HAN Menglin ,
  • CHEN Gao ,
  • LI Weiwei ,
  • ZHANG Shuxiang ,
  • JIANG Xiaolan
Expand
  • 1. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
    2. School of Life Science, Anhui Agricultural University, Hefei 230036, China

Received date: 2021-12-12

  Revised date: 2022-01-07

  Online published: 2022-10-28

摘要

茶树喜酸耐铝,且低浓度的铝促进茶树生长,然而其调控机理并不清晰。从耐铝促生菌的角度,探究其可能的原因。以铝处理的茶树根系为材料,经分离鉴定,得到可培养的内生细菌38株,其中厚壁菌门27株,放线菌门11株。从利用1-氨基环丙烷-1-羧酸(ACC)能力、溶磷能力、产铁载体能力和分泌吲哚乙酸(Indole-3-acetic acid,IAA)能力对38株内生细菌进行了探究,结果表明,38株内生细菌都有一种以上的促生能力,其中厚壁菌FBA、FPC以及放线菌AMM、ACP032155等菌株的综合促生能力较好;38株内生细菌在1 mmol·L-1 Al3+浓度下均能存活,其中放线菌AME2耐铝能力最强,在8 mmol·L-1 Al3+浓度下仍能存活,说明铝能促进茶树耐铝促生菌的生长,从而间接促进茶树的生长,为选育具有显著耐铝促生能力的茶树内生细菌用于茶树的栽培育种奠定基础。

本文引用格式

武警 , 陈楠楠 , 韩梦琳 , 陈高 , 厉伟伟 , 张蜀香 , 蒋晓岚 . 茶树根系耐铝促生内生细菌的分离鉴定及其特性研究[J]. 茶叶科学, 2022 , 42(5) : 610 -622 . DOI: 10.13305/j.cnki.jts.2022.05.006

Abstract

Tea plants are aluminum-tolerant plants. Low concentration of aluminum promotes the growth of tea plants, but its regulation mechanism remains unclear. In this experiment, 38 strains of culturable endophytic bacteria were isolated and identified from the roots of tea plants treated with aluminum, including 27 strains of Firmicutes and 11 strains of Actinomycetes. Plant growth promoting abilities of the isolated endophytic bacteria were explored from ACC deaminase, phosphate solubilization, siderophore and IAA production. It was found that the comprehensive plant growth promoting abilities of Firmicutes FBA, FPC and Actinomycetes AMM, ACP032155 were better. The relative activities of the 38 strains at different aluminum ion concentrations were further investigated. The results show that the 38 strains of endophytic bacteria could survive under 1 mmol·L-1 Al3 + concentration, among which Actinomycetes AME2 could still survive under 8 mmol·L-1Al3+, which showed the strongest aluminum tolerance. The results show that aluminum treatment could promote the growth of aluminum-tolerant bacteria in tea plants, thus indirectly promoting the growth of tea plants. This study laid a foundation for the cultivation and breeding of endophytic bacteria of tea plants with significant aluminum tolerance and growth promotion ability.

参考文献

[1] 骆耀平. 茶树栽培学[M]. 北京: 中国农业出版社, 2015.
Luo Y P.Tea cultivation [M]. Beijing: China Agriculture Press, 2015.
[2] 沈宏, 严小龙. 铝对植物的毒害和植物抗铝毒机理及其影响因素[J]. 土壤通报, 2001(6): 281-285.
Shen H, Yan X L.Types of aluminum toxicity and plants resistance to aluminum toxicity[J]. Chinese Journal of Soil Science, 2001(6): 281-285.
[3] 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915.
Sun T, Liu P, Zheng R W, et al.Forms and accumulation of aluminum in tea plant (Camellia sinensis)[J]. The Crop Journal, 2009, 35(10): 1909-1915.
[4] 王金林, 闻禄, 陈平, 等. 长期不同施肥对茶园土壤pH、茶叶产量可持续性和品质的影响[J]. 中国农学通报,2021, 37(8): 84-88.
Wang J L, Wen L, Chen P, et al.Effects of long-term fertilization on soil pH, yield sustainability and quality of tea[J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 84-88.
[5] 傅绍光, 刘鹏, 罗虹, 等. 铝和氟对茶树根际土壤微生物交互作用的研究[J]. 浙江师范大学学报(自然科学版), 2009, 32(3): 332-337.
Fu S G, Liu P, Luo H, et al.Interaction of aluminum and fluorine stress on soil microbes of tea rhizosphere[J]. Journal of Zhejiang Normal University (Natural Sciences), 2009, 32(3): 332-337.
[6] Watanabe T, Osaki M.Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review[J]. Communications in Soil Science and Plant Analysis, 2002, 33(7/8): 1247-1260.
[7] Kochian L V, Piñeros M A, Liu J, et al.Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66: 571-598.
[8] 黄凯, 张红宇, 张菡倩, 等. 植物应答铝毒的分子机制研究进展[J]. 生物技术通报, 2021, 37(3): 125-135.
Huang K, Zhang H Y, Zhang H Q, et al.Research progress on the molecular mechanism of plants response to aluminum toxicity[J]. Biotechnology Bulletin, 2021, 37(3): 125-135.
[9] Tahara K, Hashida K, Otsuka Y, et al.Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis[J]. Plant Physiology, 2014, 164(2): 683-693.
[10] Kidd P S, Llugany M, Poschenrieder C, et al.The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( Zea mays L.)[J]. Journal of Experimental Botany, 2001, 52(359): 1339-1352.
[11] 赵希俊, 宋萍, 封磊, 等. 一株具有耐铝促生作用的茶树内生细菌的分离鉴定[J]. 江西农业大学学报, 2014, 36(2): 407-412.
Zhao X J, Song P, Feng L, et al.Isolation and identification of a growth-promoting and aluminum-resistant endophytic bacterium from tea tree[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 407-412.
[12] Sun L L, Zhang M S, Liu X M, et al.Aluminium is essential for root growth and development of tea plants(Camellia sinensis)[J]. Journal of Integrative Plant Biology, 2020(7): 984-997.
[13] 兰欣悦. 土壤酸化对于茶树利用铝的影响[J]. 广东蚕业, 2019, 53(5): 30-31, 33.
Lan X Y.The effect of soil acidification on the utilization of aluminum in tea trees[J]. Guangdong Sericulture, 2019, 53(5): 30-31, 33.
[14] 黄丹娟, 毛迎新, 陈勋, 等. 茶树富集铝的特点及耐铝机制研究进展[J]. 茶叶科学, 2018, 38(2): 125-132.
Huang D J, Mao Y X, Chen X, et al.Advances in aluminum accumulation and tolerance mechanisms in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2018, 38(2): 125-132.
[15] Ding Z J, Shi Y Z, Li G X, et al.Tease out the future: how tea research might enable crop breeding for acid soil tolerance[J]. Plant Communications, 2021, 2(3): 100182. doi: 10.1016/j.xplc.2021.100182.
[16] 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 356-362.
Wang M, Ning Q Y, Shi Y Z.Study on physiological response of tea plant (Camellia sinensis) seedlings to different aluminum concentrations[J]. Journal of Tea Science, 2017, 37(4): 356-362.
[17] 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江农业大学学报, 1995, 21(5): 461-464.
Pan G S, Shigeki K.Effect of nitrogen on growth of tea under the supply of aluminium[J]. Journal of Zhejiang Agricultural University, 1995, 21(5): 461-464.
[18] Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis)[J]. Phytochemistry, 2008, 69(1): 147-153.
[19] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017, 119: 265-274.
[20] Safari M, Ghanati F, Safarnejad M R, et al.The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum[J]. Planta, 2018, 247(2): 381-392.
[21] Fu Z H, Jiang X L, Li W W, et al.Proanthocyanidin-aluminum complexes improve aluminum resistance and detoxification of Camellia sinensis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(30): 7861-7869.
[22] 何玲敏, 叶建仁. 植物内生细菌及其生防作用研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 153-159.
He L M, Ye J R.Endophytic bacteria: research advances and biocontrol applications[J]. Journal of Nanjing Forestry University (Natural Sciences), 2014, 38(6): 153-159.
[23] 严婉荣, 赵廷昌, 肖彤斌, 等. 生防细菌在植物病害防治中的应用[J]. 基因组学与应用生物学, 2013, 32(4): 533-539.
Yan W R, Zhao T C, Xiao T B, et al.Applications of biocontrol bacteria in plant disease control[J]. Genomics and Applied Biology, 2013, 32(4): 533-539.
[24] Shan W N, Zhou Y, Liu H H, et al.Endophytic actinomycetes from tea plants (Camellia sinensis): isolation, abundance, antimicrobial, and plant-growth-promoting activities[J]. BioMed Research International, 2018, 2018: 1-12. doi: 10.1155/2018/1470305.
[25] 王红珠, 吴华芬, 吕高卿, 等. 耐铅植物内生菌的筛选及其促生机制研究[J]. 浙江农业科学, 2021, 62(4): 823-827.
Wang H Z, Wu H F, Lü G Q, et al.Screening and promoting mechanism study of Pb-resistant endophytes[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 823-827.
[26] 张沁怡, 杨美雪, 张婷, 等. 油菜根内生菌分离、鉴定及其植物益生作用筛选[J]. 福建农业科技, 2021, 52(11): 33-43.
Zhang Q Y, Yang M X, Zhang T, et al.Isolation and identification of endophytic bacteria from the roots of brassica napus and the screening for the probiotic effects of plants[J]. Fujian Agricultural Science and Technology, 2021, 52(11): 33-43.
[27] 狄义宁, 谢林艳, 谷书杰, 等. 甘蔗及甘蔗近缘属内生菌的筛选、鉴定与功能研究[J]. 中国农业大学学报, 2021, 26(11): 70-83.
Di Y N, Xie L Y, Gu S J, et al.Screening, identification and biological function study of endophytic bacteria isolated[J]. Journal of China Agricultural University, 2021, 26(11): 70-83.
[28] Lucero C T, Lorda G S, Anzuay M S, et al.Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants[J]. Current Microbiology, 2021, 78(5): 1961-1972.
[29] 罗继鹏, 陶琦, 吴可人, 等. 超积累植物内生微生物群落组成特征及其功能研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 515-529.
Luo J P, Tao Q, Wu K R, et al.Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(5): 515-529.
[30] 刘雪停, 林晓民, 夏彦飞. 牡丹内生细菌生物防治技术研究进展[J]. 河南农业, 2021(12): 55-56.
Liu X T, Lin X M, Xia Y F.Research progress on biological control technology of endophytic bacteria in Peonia Suffruticosa[J]. Agriculture of Henan, 2021(12): 55-56.
[31] 常恺莉, 张琳, 周红英, 等. 药用植物内生菌资源在农业中的应用与研究进展[J]. 山东农业科学, 2021, 53(7): 135-141.
Chang K L, Zhang L, Zhou H Y, et al.Application and research progress of endophyte resources of medicinal plants in agriculture[J]. Shandong Agricultural Sciences, 2021, 53(7): 135-141.
[32] 于晓燕, 宋宇辰, 魏光普, 等. 镧、铈污染土壤中植物-菌根协同修复效应[J]. 稀土, 2021, 42(4): 91-100.
Yu X Y, Song Y C, Wei G P, et al.Phytomycorrhizal synergistic remediation of soil polluted by lanthanum and cerium[J]. Chinese Rare Earths, 2021, 42(4): 91-100.
[33] 张凯璇, 唐艳葵, 秦芷怡, 等. 植物内生菌应用于有害金属污染环境修复研究进展[J]. 江苏农业科学, 2018, 46(6): 17-22.
Zhang K X, Tang Y K, Qin Z Y, et al.Research progress on application of plant endophytes in remediation of environmental pollution caused by harmful metals[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 17-22.
[34] 刘丽辉, 蒋慧敏, 区宇程, 等. 南方野生稻内生细菌的分离鉴定及促生作用[J]. 应用与环境生物学报, 2020, 26(5): 1051-1058.
Liu L H, Jiang H M, Qu Y C, et al.Identification and growth promotion of endophytic bacteria isolated from Oryza meridionalis[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1051-1058.
[35] 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5.
Wang L Q, Yan X M, Guo X S, et al.Diversity of endophytic microorganisms Zijuan and Yunkang 10 of Camellia sinensis[J]. Journal of Anhui Agricultural University, 2016, 43(1): 1-5.
[36] 冀玉良, 李丹, 罗嘉凡. ACC脱氨酶活性菌的分离及其对桔梗的促生作用[J]. 商洛学院学报, 2021, 35(2): 33-40.
Ji Y L, Li D, Luo J F.Isolation of ACC deaminase active bacteria and its growth-promoting effect on platycodon grandiflorum[J]. Journal of Shangluo University, 2021, 35(2): 33-40.
[37] 李玲, 沈琼雯, 庞祥宇, 等. 贵州喀斯特地区具ACC脱氨酶活性细菌的分离和鉴定[J]. 基因组学与应用生物学, 2018, 37(4): 1495-1505.
Li L, Shen Q W, Pang X Y, et al.Isolation and identification of bacteria with 1-aminocyclopropane-1-carboxylic acid deaminase activity in karst soil from Guizhou[J]. Genomics and Applied Biology, 2018, 37(4): 1495-1505.
[38] 张莹, 张文莉, 陈小贝, 等. 细菌产铁载体的结构、功能及其研究进展[J]. 中国卫生检验杂志, 2012, 22(9): 2249-2251.
Zhang Y, Zhang W L, Chen X B, et al.Structure, function and research progress of bacterial iron-producing carrier[J]. Chinese Journal of Health Laboratory Technology, 2012, 22(9): 2249-2251.
[39] 董蒙蒙, 袁博, 徐玲霞, 等. 南方红豆杉产IAA内生芽胞杆菌的分离、鉴定及产脂肽类化合物研究[J]. 亚热带植物科学, 2020, 49(6): 420-426.
Dong M M, Yuan B, Xu L X, et al.Isolation and identification of endophytic Bacillus sp. producing IAA from taxus wallichiana var. mairei and its lipopeptide production[J]. Subtropical Plant Science, 2020, 49(6): 420-426.
[40] 孙艳敏, 韩锦峰, 陈小丽, 等. 减施化学农药防治植物病害措施的研究进展[J]. 贵州农业科学, 2021, 49(5): 58-66.
Sun Y M, Han J F,Chen X L, et al.Advances in measures of reduction of chemical pesticides to control plant diseases[J]. Guizhou Agricultural Sciences, 2021, 49(5): 58-66.
[41] 游雨晴. 生物防治在农业病虫害防治中的应用[J]. 新农业, 2021(7): 13-14.
You Y Q.Application of biological control in agricultural pest control[J]. Modern Agriculture, 2021(7): 13-14.
文章导航

/