欢迎访问《茶叶科学》,今天是
研究报告

有机管理模式对茶园土壤真菌群落结构及功能的影响

  • 王峰 ,
  • 陈玉真 ,
  • 吴志丹 ,
  • 尤志明 ,
  • 余文权 ,
  • 俞晓敏 ,
  • 杨贞标
展开
  • 1.福建农林大学园艺学院,福建 福州 350002;
    2.福建省农业科学院茶叶研究所,福建 福州 350012;
    3.福建农林大学海峡联合研究院园艺植物生物学及代谢组学研究中心,福建 福州 350002;
    4.福建省农业科学院,福建 福州 350013;
    5.美国加利福利亚大学河滨分校,加利福尼亚州 河滨 92506
王峰,男,副研究员,主要研究方向为茶树栽培与环境生态,82458lin@163.com。

收稿日期: 2022-02-28

  修回日期: 2022-05-06

  网络出版日期: 2022-10-28

基金资助

福建省自然科学基金项目(2021J01489)、国家重点研发计划项目(2016YFD0200903)、福建省科技厅公益类科研专项(2020R1029001、2021R1029002)、农业科技创新联盟专项(CXLM202202)

Effects of Organic Management Mode on Soil Fungal Community Structure and Functions in Tea Gardens

  • WANG Feng ,
  • CHEN Yuzhen ,
  • WU Zhidan ,
  • YOU Zhiming ,
  • YU Wenquan ,
  • YU Xiaomin ,
  • YANG Zhenbiao
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China;
    3. FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    4. Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
    5. Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92506, USA

Received date: 2022-02-28

  Revised date: 2022-05-06

  Online published: 2022-10-28

摘要

以两种不同管理方式(常规和有机种植)和3个坡位(上、中、下坡位)表层土壤(0~20 cm)为研究对象,通过野外调查、高通量测序、功能预测结合分子生态网络分析,研究管理方式和坡位对土壤真菌群落结构、功能特征和共发生网络的影响。研究结果表明,管理方式和坡位对土壤真菌α多样性指数影响不显著,且不存在交互作用。在门水平,管理方式及不同坡位样地的优势真菌均为子囊菌门、担子菌门和被孢霉门,管理方式没有改变土壤优势真菌的种类,但影响其相对丰度。主坐标分析(PCoA)显示,管理模式导致茶园土壤真菌群落组成发生明显改变,常规管理方式下不同坡位之间的土壤真菌群落结构有显著差异(P<0.05),而有机种植下不同坡位之间无显著差异(P>0.05)。组间群落差异分析(LEfSe)表明,37个差异物种对管理方式非常敏感,不同管理方式富集了不同的真菌类群。共现性网络分析发现,有机茶园土壤真菌网络节点数、平均聚类系数、边数、网络中心性和网络密度均明显高于常规茶园,说明其生态网络结构更为复杂。不同处理茶园土壤真菌以腐生营养型为主(66.67%~70.18%),有机茶园土壤中内生-垃圾腐生-土壤腐生-未定义腐生真菌、木材腐生真菌和动物病原-内生-植物病原-未定义腐生真菌的丰度显著高于常规茶园,而未定义腐生真菌、植物病原真菌和动物病原-植物病原-未定义腐生真菌的丰度则显著降低。相关性分析和冗余分析结果表明,土壤全磷、有效磷、全钾、有机质、阳离子交换量和pH值是影响茶园土壤真菌群落结构的主要因子。综上所述,有机管理方式对茶园土壤真菌群落结构产生显著影响,提高了土壤有益真菌的数量(被孢霉属),增强了土壤真菌网络稳定性和抗干扰能力,降低了病原真菌的丰度(如拟盘多毛孢属和假拟盘多毛孢属等),具有良好的生态环境效应。

本文引用格式

王峰 , 陈玉真 , 吴志丹 , 尤志明 , 余文权 , 俞晓敏 , 杨贞标 . 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022 , 42(5) : 672 -688 . DOI: 10.13305/j.cnki.jts.2022.05.008

Abstract

To study the soil fungal community compositions and functional groups under different management practices and slope positions, soil samples derived from the topsoil (0-20 cm) were collected from the upper, middle, and lower slope positions of conventional and organic tea gardens. High-throughput sequencing, functional predictions and the molecular ecological network analysis were performed to investigate the community structures, functional groups and ecological network of soil fungi, respectively. The two-way ANOVA including management practices and slope positions showed that the two-way interaction had no effect on the soil fungal community α-diversity. Regardless of the management practices and the slope positions, the predominant fungal phyla were Ascomycota, Basidiomycota and Mortierellomycota. Management practices did not change the compositions of dominant fungal species, but affected their relative abundance. Principal coordinate analysis (PCoA) shows that the soil fungal community structures differed significantly among different management practices. The community structures of soil fungi at different slope positions were noticeably different under the conventional planting pattern (P<0.05), but were similar under the organic planting pattern (P>0.05). The linear discriminant analysis effect size (LEfSe) analysis shows that 37 biomarkers were very sensitive to the changes in the management, with different management practices enriching for different fungal populations. The numbers of degree, clustering, edges, degree centrality and closeness centrality of the fungal interaction network under the organic planting pattern were all higher than those under the conventional planting pattern, indicating that the fungal networks were more complex in the organic tea garden. Saprotrophic fungi were the dominant fungal group across all tea gardens (66.67%~70.18%). The effects of the management practices on soil fungal functions were obvious. Compared to those under the conventional planting pattern, the average abundance of endophyte-litter saprotroph-soil saprotroph, wood saprotroph and animal pathogen-endophyte-plant pathogen-undefined saprotroph significantly increased, but the average abundance of undefined saprotroph, plant pathogen and animal pathogen-plant pathogen-undefined saprotroph remarkably decreased. The spearman correlation analysis and the redundancy analysis (RDA) show that soil total phosphorus, available phosphorus, total potassium, organic matter, cation exchange capacity and pH were the main factors affecting the abundance and diversity of the soil fungal community. Organic planting drastically changes the structure and the compositions of the soil fungal community, enhances fungal network complexity and stability, and thus is beneficial to maintain the sustainable ecosystem in tea garden soil.

参考文献

[1] 茹玉, 肖庆文, 都静. 全球价值链助推农业产业升级的创新路径研究—基于湄潭县茶产业扶贫项目的案例分析[J]. 农业经济问题, 2019, 472(4): 51-59.
Ru Y, Xiao Q W, Du J.Research on innovation path of global value chains (GVCs) promoting the agricultural industry upgrading: experience from the poverty alleviation project of the tea industry in meitan county, guizhou province[J]. Problems of Agricultural Economy, 2019, 472(4): 51-59.
[2] Yan P, Shen C, Fan L C, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture Ecosystems Environment, 2018, 254: 20-25.
[3] 丁瑞兴, 黄骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J]. 土壤学报, 1991, 28(3): 229-236.
Ding R X, Huang X.Biogeochemical cyele of aluminum and fhuorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedologica Sinica, 1991, 28(3): 229-236.
[4] Wang S Q, Li T X, Zheng Z C.Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China[J]. Ecological Engineering, 2016, 90: 113-119.
[5] Han W Y, Kemmitt S J, Brookes P C .Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology Biochemistry, 2007, 39(7): 1468-1478.
[6] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799.
[7] 王海斌, 陈晓婷, 王裕华, 等. 不同树龄茶树根际土壤物质对其生长和品质的影响[J]. 热带作物学报, 2019, 40(11): 2149-2159.
Wang H B, Chen X T, Wang Y H, et al.Effects of rhizosphere soil chemicals on growth and quality of tea trees at different ages[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2149-2159.
[8] 余继忠, 徐家明, 黄海涛, 等. 重修剪、台刈和改植换种三种茶园改造方式的比较[J]. 茶叶科学, 2008, 28(3): 221-227.
Yu J Z, Xu J M, Huang H T, et al.Comparison on the different rehabilitation methods of heavy pruning, collar pruning and replanting[J]. Journal of Tea Science, 2008, 28(3): 221-227.
[9] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力,酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 26-31.
Wang H B, Chen X T, Ding L, et al.Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31.
[10] Arafat Y, Wei X Y, Jiang Y H, et al.Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems[J]. International Journal of Molecular Sciences, 2017, 18(8): 1727. doi: 10.3390/ijms18081727.
[11] Arafat Y, Din I U, Tayyab M, et al.Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens[J]. Frontiers in Plant Science, 2020, 11: 601. doi: 10.3389/fpls.2020.00601.
[12] 王海斌, 陈晓婷. 连作土壤对铁观音茶树生理特性的影响[J]. 农产品加工(上), 2015(10): 33-35.
Wang H B, Chen X T.Effect of Tieguanyin continue cropping soil on tea seeding physiological characteristics[J]. Academic Periodical of Farm Products Processing, 2015(10): 33-35.
[13] Yang Y R, Kim J Y, Chung J O, et al.Variations in the composition of tea leaves and soil microbial community[J]. Plant and Soil, 2022, 58: 167-179.
[14] Tang S, Zhou J J, Pan W K, et al.Impact of N application rate on tea (Camellia sinensis) growth and soil bacterial and fungi communities[J]. Plant and Soil, 2022, 475: 343-359.
[15] Liu C, Wang S, Yan J, et al.Soil fungal community affected by regional climate played an important role in the decomposition of organic compost[J]. Environmental Research, 2021, 197(315): 111076. doi: 10.1016/j.envres.
2021.111076.
[16] Wang Z T, Chen Q, Liu L, et al.Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China[J]. Applied Soil Ecology, 2016, 101: 132-140.
[17] Tedersoo L, Bahram M, Põlme S, et al.Global diversity and geography of soil fungi[J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688.
[18] Morrison-Whittle P, Lee S A, Goddard M R.Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems[J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313.
[19] Tsiafouli M A, Thébault E, Sgardelis S P, et al.Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21: 973-985.
[20] Li H X, Cai X X, Gong J Y, et al.Long-term organic farming manipulated rhizospheric microbiome and bacillus antagonism against pepper blight (Phytophthora capsici)[J]. Frontiers in Microbiology, 2019, 10: 342. doi: 10.3389/ fmicb.
2019.00342.
[21] Peltoniemi K, Velmala S, Fritze H, et al.Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil[J]. European Journal of Soil Biology, 2021, 21: 103314. doi: 10.1016/j.ejsobi.2021.103314.
[22] Uzman D, Pliester J, Leyer I, et al.Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils[J]. Applied Soil Ecology, 2019, 133: 89-97.
[23] Bell L W, Sparling B, Tenuta M, et al.Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland[J]. Agriculture Ecosystems Environment, 2012, 158(3): 156-163.
[24] Alegbeleye O O, Sant'Ana A S. Manure-borne pathogens as an important source of water contamination: an update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies[J]. International Journal of Hygiene and Environmental Health, 2020, 227(11): 113524. doi: 10.1016/j.ijheh.2020.113524.
[25] Wang W H, Wang H, Feng Y Z, et al.Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River[J]. Scientific Reports, 2016, 6: 35046. doi: 10.1038/srep35046.
[26] Wu T, Liu W, Wang D, Zou Y K, et al.Organic management improves soil phosphorus availability and microbial properties in a tea plantation after land conversion from longan (Dimocarpus longan)[J]. Applied Soil Ecology, 2020, 154: 103642. doi: 10.1016/j.apsoil.2020.103642.
[27] 何燕, 李廷轩, 王永东. 低山丘陵区不同坡位茶园土壤肥力特征研究[J]. 中国生态农业学报, 2009, 17(4): 661-666.
He Y, Li T X, Wang Y D.Soil fertility in tea plantations in different slope positions and elevation regions[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 661-666.
[28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
Lu R K.Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Scientech Press, 2000.
[29] Nguyen N H, Song Z W, Bates S, et al.Fun guild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.
[30] Kazerooni E A, Maharachchikumbura S, Velazhahan R, et al.Fungal diversity in Tomato rhizosphere soil under conventional and desert farming systems[J]. Frontiers in Microbiology, 2017, 8: 1462. doi.org/10.3389/fmicb.2017.01462.
[31] Karlsson I, Friberg H, Kolseth A K, et al.Organic farming increases richness of fungal taxa in the wheat phyllosphere[J]. Molecular Ecology, 2017, 26: 3424-3436.
[32] Schlatter D C, Schillinger W F, Bary A I, et al.Biosolids and conservation tillage: impacts on soil fungal communities in dryland wheat-fallow cropping systems[J]. Soil Biology Biochemistry, 2017, 115: 556-567.
[33] Li Y, Zhang Q P, Cai Y J, et al.Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage[J]. The Science of the Total Environment, 2020, 716: 137164. doi.org/10.1016/j.scitotenv.2020.137164.
[34] Wang Z, Zhang Q, Staley C, et al.Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability[J]. Biology and Fertility of Soils, 2019, 55: 121-134.
[35] 周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征[J]. 应用生态学报, 2018, 29(3): 909-914.
Zhou Q, Wang L C, Xing Yi, et al.Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 909-914.
[36] Zhang H L, Zheng X Q, Bai N L, et al.Responses of soil bacterial and fungal communities to organic and conventional farming systems in East China[J]. Journal of microbiology and biotechnology, 29(3): 441-453.
[37] Geel V M, Verbruggen E, Beenhouwer D M, et al.High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards[J]. Agriculture Ecosystems Environment, 2017, 248: 144-152.
[38] 姚雪玲, 傅伯杰, 吕一河. 黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J]. 生态学报, 2012, 32(16) : 4961-4968.
Yao X L, Fu B J, Lü Y H.Spatial patterns of soil moisture at transect scale in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2012, 32(16): 4961-4968.
[39] 赵炯昌, 卫伟, 段兴武. 模拟降雨下黄土坡面水沙过程对3种灌草植被垂直结构变化的响应[J]. 生态学报, 2021, 41(21): 8602-8611.
Zhao J C, Wei W, Duan X W.Response of the runoff and sediment process on loess slope to the vertical structure changes of three shrub and grass vegetations under simulated rainfall[J]. Acta Ecologica Sinica, 2021, 41(21): 8602-8611.
[40] Manoeli L, Korthals G W, Mattias D H, et al.Soil microbiome is more heterogeneous in organic than in conventional farming system[J]. Frontiers in Microbiology, 2016, 7: 2064. doi: 10.3389/fmicb.2016.02064.
[41] Hu L, Robert C, Selma C, et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9: 2738. doi: 10.1038/s41467-018-05122-7.
[42] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12-22.
Yang Z, Dai C C, Wang X X, et al.Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12-22.
[43] Li Y Y, Feng J, Zheng L, et al.Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt[J]. Journal of Plant Pathology, 2020, 102: 731-742.
[44] Van Wees S C, Van der Ent S, Pieterse C M. Plant immune responses triggered bybeneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11: 443-448.
[45] Soman A G, Gloer J B, Wicklow D T.Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of Mortierella vinacea[J]. Journal of Natural Products, 1999, 62(2): 386-388.
[46] Maharachchikumbura S, Guo L D, Liu Z Y, et al.Pseudopestalotiopsis ignota and Ps. camelliae spp. nov. associated with grey blight disease of tea in China[J]. Mycological Progress, 2016, 15(3): 1-7.
[47] Voglmayr H, Rossman A Y, Castlebury L A, et al.Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales)[J]. Fungal Diversity, 2012, 57(1): 1-44.
[48] Anthony M A, Frey S D, Stinson K A.Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion[J]. Ecosphere, 2017, 8(9): e01951. doi.org/10.1002/ecs2.1951.
[49] 黄兰婷, 倪浩为, 李新宇, 等. 典型红壤水稻土剖面细菌和真菌分子生态网络特征研究[J]. 土壤学报, 2021, 58(4): 1018-1027.
Huang L T, Ni H W, Li X Y, et al.Molecular ecological network of bacteria and fungi in paddy soil of typical red soil[J]. Acta Pedologica Sinica, 2021, 58(4): 1018-1027.
[50] Zhou Z H, Wang C K, Luo Y Q, et al.Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 1-10.
[51] Mushinski R M, Gentry T J, Bouttona T W.Organic matter removal associated with forest harvest leads to decade scale alterations in soil fungal communities and functional guilds[J]. Soil Biology and Biochemistry, 2018, 127: 127-136.
[52] Du C, Geng Z C, Wang Q, et al.Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest[J]. Journal of Microbiology, 2017, 55(9): 684-693.
[53] Lauber C L, Hamady M, Knight R, et al.Pyrosequencing-
based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120.
[54] Li Y C, Li Z W, Arafat Y, et al.Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020, 70(7): 1-12.
[55] Chen B B, Jiao S, Luo S W, et al.High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau[J]. Environmental Microbiology, 2021, 23(1): 464-477.
[56] Liu M, Liu J, Jiang C Y, et al.Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus[J]. Biology Fertility of Soils, 2018, 54: 259-267.
[57] Lin X G, Feng Y Z, Zhang H Y, et al.Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north china revealed by 454 pyrosequencing[J]. Environmental Science Technology, 2012, 46(11): 5764-5771.
[58] Li P F, Liu M, Li G L, et al.Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by ralstonia[J]. Environmental Microbiology, 2021, 23(10): 5992-6003.
文章导航

/