欢迎访问《茶叶科学》,今天是
研究报告

基于离散元法的茶园仿生铲减阻性能研究

  • 姜嘉胤 ,
  • 董春旺 ,
  • 倪益华 ,
  • 徐家俊 ,
  • 李杨 ,
  • 马蓉
展开
  • 1.浙江农林大学光机电工程学院,浙江 杭州 311300;
    2.中国农业科学院茶叶研究所,浙江 杭州 310008;
    3.浙江川崎茶业机械有限公司,浙江 杭州 311121
姜嘉胤,男,硕士研究生,主要从事农业机械化研究。

收稿日期: 2022-07-18

  修回日期: 2022-08-22

  网络出版日期: 2023-01-04

基金资助

浙江省“尖兵”研发攻关计划资助(2022C02010)、浙江农林大学人才启动项目(2020FR063)

Research on Drag Reduction Performance of Tea Garden Bionic Shovel Based on Discrete Element Method

  • JIANG Jiayin ,
  • DONG Chunwang ,
  • NI Yihua ,
  • XU Jiajun ,
  • LI Yang ,
  • MA Rong
Expand
  • 1. College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Zhejiang Kawasaki Tea Machinery Co., Ltd., Hangzhou 311121, China

Received date: 2022-07-18

  Revised date: 2022-08-22

  Online published: 2023-01-04

摘要

针对茶园土壤板结较为严重、行距小、耕作阻力大且易使耕作机构发生缠绕等问题,提出了一种基于离散元法的仿生铲,并对其进行减阻性能研究。使用离散元仿真与试验结合的方法对茶园板结土壤的物理参数进行测量。以鼹鼠爪趾为原型,结合其挖掘动作,设计出基于四杆机构的耕作机构,并使用离散元的方法研究鼹鼠爪趾的趾尖、趾廓及两者复合的仿生特征的减阻效果。离散元仿真结果表明,在各个耕作条件下,趾尖仿生特征的平均扭矩减小比例和功耗减少比例分别为1.72%~5.04%和1.58%~4.84%,趾廓仿生特征的平均扭矩减小比例和功耗减少比例分别为34.06%~39.29%和29.02%~34.73%,复合仿生特征的平均扭矩减小比例和功耗减少比例分别为36.61%~42.06%和30.84%~38.15%,说明趾尖和趾廓两个仿生特征的减阻效果在一定程度上可以叠加,复合后的仿生特征有更好的减阻效果。

本文引用格式

姜嘉胤 , 董春旺 , 倪益华 , 徐家俊 , 李杨 , 马蓉 . 基于离散元法的茶园仿生铲减阻性能研究[J]. 茶叶科学, 2022 , 42(6) : 791 -805 . DOI: 10.13305/j.cnki.jts.2022.06.004

Abstract

Aiming at the problems of serious soil compaction, small row spacing, large tillage resistance and easy entanglement in tea gardens, a bionic shovel based on discrete element method was proposed, and its drag reduction performance was studied. The physical parameters of the compacted soil in tea garden were measured by discrete element simulation and experiment method. Taking the mole claw as the prototype, combined with its digging action, a tillage agency based on a four-bar mechanism was designed, and the drag reduction effects of the claw tip and claw profile of the mole claw were studied using the discrete element method. From the discrete element simulation results, it can be seen that under various tillage conditions, the average torque reduction ratio and power consumption reduction ratio of the claw-tip bionic feature were 1.72%-5.04% and 1.58%-4.84%, respectively. The average torque reduction ratio and power consumption reduction ratio of the claw profile bionic feature were 34.06%-39.29% and 29.02%-34.73%, respectively. The average torque reduction ratio and power consumption reduction ratio of the composite bionic feature were 36.61%-42.06% and 30.84%-38.15%, respectively. It can be seen that the drag reduction effects of the two bionic features could be superposed to a certain extent, and the combined bionic feature had a better drag reduction effect.

参考文献

[1] 张立彬, 计时鸣, 胥芳, 等. 农业机器人的主要应用领域和关键技术[J]. 浙江工业大学学报, 2002, 30(1): 38-43.
Zhang L B, Ji S M, Xu F, et al.Main application domains and key techniques of agricultural robots[J]. Journal of Zhejiang University of Technology, 2002, 30(1): 38-43.
[2] 张宪, 李良晶, 孔涛. 基于SPH法的板结土壤深耕技术研究[J]. 机电工程, 2010, 27(9): 1-5, 52.
Zhang X, Li L J, Kong T.Research on deep plowing for compacted soil based on SPH[J]. Journal of Mechanical & Electrical Engineering, 2010, 27(9): 1-5, 52.
[3] 陈东辉. 典型生物摩擦学结构及仿生[D]. 长春: 吉林大学, 2007.
Chen D H.Typical bio-tribological structures and their biomimetic applications[D]. Changchun: Jilin University, 2007.
[4] 文立阁. 灭茬刀辊仿生减阻研究[D]. 长春: 吉林大学, 2009.
Wen L G.Study on bionic and resistance-reduction of Stubble Crushing Blade Rooler[D]. Changchun: Jilin University, 2009.
[5] 李默. 基于螳螂前足结构特征的仿生切茬刀片设计[D]. 长春: 吉林大学, 2013.
Li M.Design of bionic stubble-cutting blade based on the structural characteristic of praying mantis (Mantis religiosa Linnaeus)’s[D]. Changchun: Jilin University, 2013.
[6] 俞杰. 基于家兔爪趾结构的旋耕刀仿生设计[D]. 长沙: 中南林业科技大学, 2019.
Yu J.Bionic design of rotary blade based on rabbit’s claw-toe structural characteristics[D]. Changsha: Central South University of Forestry and Technology, 2019.
[7] 李建桥, 任露泉, 刘朝宗, 等. 减粘降阻仿生犁壁的研究[J]. 农业机械学报, 1996, 27(2): 1-4.
Li J Q, Ren L Q, Liu C Z, et al.A study on the bionic plow moldboard of reducing soil adhesion and plowing resistance[J]. Transactions of the Chinese Society of Agricultural Machinery, 1996, 27(2): 1-4.
[8] Sun J F, Chen H M, Wang Z M, et al.Study on plowing performance of EDEM low-resistance animal bionic device based on red soil[J]. Soil and Tillage Research, 2020, 196: 104336. doi: 10.1016/j.still.2019.104336.
[9] 张思博. 基于蝼蛄爪趾特征的仿生挖掘机铲斗的设计与分析[D]. 天津: 天津科技大学, 2014.
Zhang S B.Design and analysis of a biomimetic excavator bucker bioinspired by the characteristics of mole cricket claw[D]. Tianjin: Tianjin University of Science and Technology, 2014.
[10] 张智泓, 甘帅汇, 左国标, 等. 以砂鱼蜥头部为原型的仿生深松铲尖设计与离散元仿真[J]. 农业机械学报, 2021, 52(9): 33-42.
Zhang Z H, Gan S H, Zuo G B, et al.Bionic design and performance experiment of sandfish head inspired subsoiler tine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 52(9): 33-42.
[11] 杨玉婉. 鼹鼠前足多趾组合结构切土性能研究与仿生旋耕刀设计[D]. 长春: 吉林大学, 2019.
Yang Y W.Study on the soil-cutting performance of multi-claw combination of mole rats and design of biomimetic rotary tillage blade[D]. Changchun: Jilin University, 2019.
[12] 王权业, 周文扬, 魏万红, 等. 高原鼢鼠的挖掘行为及其与土壤硬度的关系(英文)[J]. 兽类学报, 2000, 20(4): 277-283.
Wang Q Y, Zhou W Y, Wei W H, et al.The burrowing behavior of Myospalax beiley and its relation to soil hardness[J]. Acta Theriologica Sinica, 2000, 20(4): 277-283.
[13] 王洪昌. 基于鼢鼠爪趾几何结构特征的苗间仿生除草铲设计[D]. 长春: 吉林大学, 2015.
Wang H C.Design of intra-row bionic weeding blade based on geometric characteristic of claws of Myospalax[D]. Changchun: Jilin University, 2015.
[14] 汲文峰, 贾洪雷, 佟金. 旋耕-碎茬仿生刀片田间作业性能的试验研究[J]. 农业工程学报, 2012, 28(12): 24-30.
Ji W F, Jia H L, Tong J.Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 24-30.
[15] 汲文峰. 旋耕—碎茬仿生刀片[D]. 长春: 吉林大学, 2010.
Ji W F.Biomimetic blades for soil-rototilling and stubble-breaking[D]. Changchun: Jilin University, 2010.
[16] Tong J, Ji W F, Jia H L, et al.Design and tests of biomimetic blades for soil-rototilling and stubble-breaking[J]. Journal of Bionic Engineering, 2015, 12(3): 495-503.
[17] 侍倩. 土工试验与测试技术[M]. 北京: 化学工业出版社, 2005.
Shi Q.Geotechnical testing and testing technology[M]. Beijing: Chemical Industry Press, 2005.
[18] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Ministry of Water Resources of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123-2019[S]. Beijing: China Planning Press, 2019.
[19] Mak J, Chen Y, Sadek M A.Determining parameters of a discrete element model for soil-tool interaction[J]. Soil and Tillage Research, 2012, 118: 117-122.
[20] 宋少龙, 汤智辉, 郑炫, 等. 新疆棉田耕后土壤模型离散元参数标定[J]. 农业工程学报, 2021, 37(20): 63-70.
Song S L, Tang Z H, Zheng X, et al.Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 63-70.
[21] 刘俊安. 基于离散元方法的深松铲参数优化及松土综合效应研究[D]. 北京: 中国农业大学, 2018.
Liu J A.Study on subsoiler parameters optimization and acomprehensive effect of subsoiling based on the discrete element method[D]. Beijing: China Agricultural University, 2018.
[22] 金丽丽, 姬长英, 方会敏, 等. 变量施肥机连续混合装置中肥料颗粒运动的数值分析[J]. 浙江农业学报, 2015, 27(2): 261-265.
Jin L L, Ji C Y, Fang H M, et al.Numerical simulation of mixing process of fertilizer particles in continuous mixer of variable rate fertilizer applicator[J]. Acta Agriculturae Zhejiangensis, 2015, 27(2): 261-265.
[23] González-Montellano C, Ramírez Á, Gallego E, et al.Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos[J]. Chemical Engineering Science, 2011, 66(21): 5116-5126.
[24] Yu Y, Henrik S.Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres[J]. Advanced Powder Technology, 2011, 22(3): 324-331.
[25] 苑进, 刘勤华, 刘雪美, 等. 多肥料变比变量施肥过程模拟与排落肥结构优化[J]. 农业机械学报, 2014, 45(11): 81-87.
Yuan J, Liu Q H, Liu X M, et al.Granular multi-flows fertilization process simulation and tube structure optimization in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(11): 81-87.
[26] Toschkoff G, Just S, Funke A, et al.Spray models for discrete element simulations of particle coating processes[J]. Chemical Engineering Science, 2013, 101: 603-614.
[27] Wu S L, Kou M Y, Jian X, et al.DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper[J]. Chemical Engineering Science, 2013, 99(32): 314-323.
[28] 周韦, 王金峰, 王金武, 等. 基于EDEM的水田深施肥机构螺旋钢丝的数值模拟与分析[J]. 农机化研究, 2015, 37(1): 27-30.
Zhou W, Wang J F, Wang J W, et al.Numerical simulation and analysis of a fertilizer can on fertilizer spreader based on EDEM[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 27-30.
[29] Yu Y W, Henrik S.Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.
[30] Scott R G, Richardson R C.Realities of biologically inspired design with a subterranean digging robot example[R]. Cambridge: Proceeding of the 6th IASTED international conference on robotics and applications, 2005: 226-231.
[31] Potyondy D O, Cundall P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[32] 蒋开云. 基于巨蜥的仿生机构设计及其应用研究[D]. 桂林: 桂林电子科技大学, 2020.
Jiang Y K.The Research on biomimetic mechanism design and its application based on monitor lizard[D]. Guilin: Guilin University of Electronic Technology, 2020.
文章导航

/