欢迎访问《茶叶科学》,今天是
研究报告

不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究

  • 陈薛 ,
  • 左欣欣 ,
  • 徐安安 ,
  • 徐平 ,
  • 王岳飞
展开
  • 浙江大学茶叶研究所,浙江 杭州 310058
陈薛,女,硕士研究生,主要从事茶叶功能与深加工研究。

收稿日期: 2022-03-31

  修回日期: 2022-07-25

  网络出版日期: 2023-01-04

基金资助

浙江大学基本科研业务费专项(启真计划,226-2022-00207)

Comparative Study on the Physicochemical Characteristics and Antioxidant Activities of Polysaccharides in Different Tea Cultivars

  • CHEN Xue ,
  • ZUO Xinxin ,
  • XU An'an ,
  • XU Ping ,
  • WANG Yuefei
Expand
  • Institute of Tea Science, Zhejiang University, Hangzhou 310058, China

Received date: 2022-03-31

  Revised date: 2022-07-25

  Online published: 2023-01-04

摘要

选取来自同一茶园且具有代表性的黄金桂、铁观音、祁门种、六堡茶、大红袍、槠叶齐、龙井43、白叶1号、中黄1号和福鼎大白茶10个茶树品种鲜叶为原料,直接进行微波干燥固样,通过水提法制备10个不同茶树品种的多糖,采用化学分析、高效液相色谱、红外光谱、凝胶色谱层析、扫描电镜、测量粒径和Zeta电位等方法比较分析10个茶多糖的主要理化性质,并测定其1,1-二苯基-2-苦肼基(DPPH)、2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)自由基清除能力和铁离子还原能力等体外抗氧化活性。理化性质结果表明,茶多糖是一类水溶性的酸性糖蛋白,主要由糖醛酸、中性糖、蛋白质和多酚构成;10个茶多糖的单糖组分主要由半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖组成;主成分分析(PCA)表明,白叶1号和龙井43与其他茶树品种在多糖的基本组成上具有较大差异。体外抗氧化研究表明,不同茶树品种多糖的体外抗氧化能力存在显著差异,但均随其浓度增加而呈线性增加,其中白叶1号多糖的抗氧化活性整体表现最为优异。理化性质与抗氧化活性的相关性分析结果显示,不同茶树品种多糖的抗氧化能力可能与其所含的多酚和蛋白质含量有关。

本文引用格式

陈薛 , 左欣欣 , 徐安安 , 徐平 , 王岳飞 . 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学, 2022 , 42(6) : 806 -818 . DOI: 10.13305/j.cnki.jts.2022.06.011

Abstract

In the present work, 10 representative tea cultivars (Huangjingui, Tieguanyin, Qimenzhong, Liubaocha, Dahongpao, Zhuyeqi, Longjing 43, Baiyeyihao, Zhonghuangyihao and Fudingdabai) in the same tea garden were selected and their fresh leaves were dried directly by microwave. Tea polysaccharides (TPS) from the 10 cultivars were prepared by water extraction. Their physical and chemical characteristics were compared and analyzed by chemical analysis, high performance liquid chromatography (HPLC), infrared spectroscopy (IR), gel chromatography, scanning electron microscope (SEM), particle size measurement and Zeta potential analysis. And their antioxidant abilities including DPPH radical scavenging ability, ABTS radical scavenging ability and ferric ion reducing ability were determined as well. It was found that TPS was a kind of water-soluble acid glycoprotein, which mainly consisted of uronic acid, neutral sugar, protein and polyphenols. Meanwhile, the monosaccharide components of the 10 TPSs were mainly composed of galacturonic acid, glucose, galactose and arabinose. Principal component analysis (PCA) shows that the basic composition of TPS in Baiyeyihao and Longjing 43 were significantly different from other tea cultivars. Furthermore, the antioxidant activity of TPS in Baiyeyihao was the strongest among the obtained TPS. Correlation analysis indicates that the antioxidant capacity of TPS might be related to the contents of polyphenols and proteins.

参考文献

[1] Chen F, Huang G L, Yang Z Y, et al.Antioxidant activity of Momordica charantia polysaccharide and its derivatives[J]. International Journal of Biological Macromolecules, 2019, 138: 673-680.
[2] Monobe M, Ema K, Kato F, et al.Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract[J]. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1423-1427.
[3] Wang L H, Chen L Y, Li J S, et al.Structural elucidation and immune-enhancing activity of peculiar polysaccharides fractioned from marine clam Meretrix meretrix (Linnaeus)[J]. Carbohydrate Polymers, 2018, 201: 500-513.
[4] Wu Q, Liu L, Miron A, et al.The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview[J]. Archives of Toxicology, 2016, 90(8): 1817-1840.
[5] Ferreira I C, Heleno S A, Reis F S, et al.Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities[J]. Phytochemistry, 2015, 114: 38-55.
[6] Zhang Z J, Wang F H, Wang M C, et al.A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge[J]. Carbohydrate Polymers, 2015, 117: 980-987.
[7] Fan M H, Zhu J X, Qian Y L, et al.Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities[J]. Journal of Food Biochemistry, 2020, 44(8): e13277. doi: 10.1111/jfbc.13277.
[8] Zhu J X, Zhou H, Zhang J Y, et al.Valorization of polysaccharides obtained from dark tea: preparation, physicochemical, antioxidant, and hypoglycemic properties[J]. Foods, 2021, 10(10): 2276. doi: 10.3390/foods10102276.
[9] Zhao F Q, Liu Q B, Cao J, et al.A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J]. Food and Chemical Toxicology, 2020, 135: 110886. doi: 10.1016/j.fct.2019.110886.
[10] Yang Y, Ji J, Di L, et al.Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages[J]. Carbohydrate Polymers, 2020, 241: 116355. doi: 10.1016/j.carbpol.2020.116355.
[11] Chen H X, Zhang M, Qu Z S, et al.Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2256-2260.
[12] Chen G J, Yuan Q X, Saeeduddin M, et al.Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678.
[13] Lee Y E, Yoo S H, Chung J O, et al.Hypoglycemic effect of soluble polysaccharide and catechins from green tea on inhibiting intestinal transport of glucose[J]. Journal of the Science of Food and Agriculture, 2020, 100(10): 3979-3986.
[14] Tang G Y, Meng X, Gan R Y, et al.Health functions and related molecular mechanisms of tea components: an update review[J]. International Journal of Molecular Sciences, 2019, 20(24): 6196. doi: 10.3390/ijms20246196.
[15] Wang M J, Chen G J, Chen D, et al.Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro[J]. International Journal of Biological Macromolecules, 2019, 140: 858-870.
[16] Xu A N, Lai W Y, Chen P, et al.A comprehensive review on polysaccharide conjugates derived from tea leaves: composition, structure, function and application[J]. Trends in Food Science & Technology, 2021, 114: 83-99.
[17] 邵淑宏. 乌龙茶多糖理化性质及抗氧化、降血糖活性研究[D]. 杭州: 浙江大学, 2015.
Shao S H.Physicochemical properties, antioxidant and hypoglycemic activities of the polysaccharides from oolong tea[D]. Hangzhou: Zhejiang University, 2015
[18] 国家质量监督检验检疫总局. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2018[S]. 北京: 中国标准出版社, 2018.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total polyphenols and catechins content in tea: GB/T 8313-2018[S]. Beijing: China Standards Press, 2018.
[19] Bradford M M.Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[20] Morris D L.Quantitative determination of carbohydrates with dreywood's anthrone reagent[J]. Science, 1948, 107(2775): 254-255.
[21] Bitter T, Muir H M.A modified uronicacid carbazole reaction[J]. Analytical Biochemistry, 1962, 4(4): 330-334.
[22] 应乐, 潘越, 王岳飞, 等. 六堡茶多糖理化性质、体外抗氧化及其对人脐静脉血管内皮细胞的保护作用[J]. 茶叶科学, 2017, 37(1): 25-37.
Ying L, Pan Y, Wang Y F, et al.Physicochemical properties, in vitro antioxidant activities and protective effects of liubao tea polysaccharides on HUVEC[J]. Journal of Tea Science, 2017, 37(1): 25-37.
[23] Santhiya D, Subramanian S, Natarajan K A.Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa[J]. Journal of Colloid and Interface Science, 2002, 256(2): 237-248.
[24] Manrique G D, Lajolo F M.FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit[J]. Postharvest Biology and Technology, 2002, 25(1): 99-107.
[25] Kacurakova M, Capek P, Sasinkova V, et al.FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers, 2000, 43(2): 195-203.
[26] Liu J, Bai R Y, Liu Y P, et al.Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants: a reivew[J]. International Journal of Biological Macromolecules, 2018, 107: 2242-2250.
[27] Wang Y L, Zhao Y, Andrae-Marobela K, et al.Tea polysaccharides as food antioxidants: an old woman's tale[J]. Food Chemistry, 2013, 138(2/3): 1923-1927.
[28] 周逸卉, 张海洋. 安吉白茶营养成分与返白机理分析及繁殖技术[J]. 现代农业科技, 2008(15): 125-126.
Zhou Y H, Zhang H Y.Analysis of nutrient composition, whitening mechanism and propagation technology of Anji white tea[J]. Modern Agricultural Science and Technology, 2008(15): 125-126.
[29] Avila J A D, Ochoa M A V, Parrilla E A, et al. Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity[J]. Journal of Food Measurement and Characterization, 2018, 12(2): 992-1004.
[30] Lin Z, Fischer J, Wicker L.Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry, 2016, 194: 986-993.
[31] Padayachee A, Netzel G, Netzel M, et al.Binding of polyphenols to plant cell wall analogues—Part 2: phenolic acids[J]. Food Chemistry, 2012, 135(4): 2287-2292.
[32] Xu L L, Chen Y, Chen Z Q, et al.Ultrafiltration isolation, physicochemical characterization, and antidiabetic activities analysis of polysaccharides from green tea, oolong tea, and black tea[J]. Journal of Food Science, 2020, 85(11): 4025-4032.
[33] Zha X Q, Wang J H, Yang X F, et al.Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran[J]. Carbohydrate Polymers, 2009, 78(3): 570-575.
[34] Li X Y, Wang L.Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides[J]. International Journal of Biological Macromolecules, 2016, 83: 270-276.
文章导航

/