NUDIX水解酶属于焦磷酸酶,在信息传递、植物生长协调和响应逆境胁迫等方面起着重要作用。基于茶树(Camellia sinensis)基因组鉴定出43个NUDIX家族基因,并运用生物信息学和实时荧光定量PCR等方法对其分析。结果表明,43个CsNUDXs蛋白质分子量介于11.8~89.2 kDa,氨基酸长度为102~342个,理论等电点为4.49~9.26,18.6%的蛋白为稳定性蛋白;根据进化关系将CsNUDXs分为6个亚家族;启动子顺式作用元件分析发现CsNUDXs具有许多与激素响应、逆境胁迫和生长发育等调控相关的作用元件;对CsNUDXs家族基因在不同器官表达模式进行分析,发现CsNUDX3、CsNUDX7在果实中表达量较高,而CsNUDX22、CsNUDX25在果实中表达量极低,CsNUDX30在老叶中表达量极低;不同处理组的实时荧光定量PCR结果表明,1 mmol·L-1茉莉酸甲酯(MeJA)处理下CsNUDX1、CsNUDX2和CsNUDX33等表达量呈现先升后降再升的趋势,而1 mmol·L-1水杨酸(SA)处理下CsNUDX4、CsNUDX12和CsNUDX22等表达量则呈现先降后升再降的趋势,300 mmol·L-1 NaCl处理下CsNUDX2、CsNUDX4和CsNUDX22等表达量呈现先升后降的趋势。本研究应用生物信息学技术初步解析了CsNUDXs的基本特征和功能,发现CsNUDXs可响应高盐胁迫和MeJA、SA处理。
NUDIX hydrolase belongs to pyrophosphatase, which plays an important role in information transmission, plant growth coordination and responses to adversity stresses. In this study, 43 NUDIX family genes were identified based on the tea (Camellia sinensis) genome, and analyzed by bioinformatics and fluorescence quantitative PCR. The results show that the protein molecular weight of 43 CsNUDXs rang from 11.8~89.2 kDa, with 102 to 342 amino acids. The theoretical isoelectric point was from 4.49 to 9.26, and 18.6% of them were stable proteins. According to the evolutionary relationship, CsNUDXs is divided into six subfamilies. Cis-acting element analysis of promoter shows that CsNUDXs have many functional elements related to hormone response, adversity stress, growth and development. The expression patterns of CsNUDXs in different organs were analyzed. It was found that the expression levels of CsNUDX3 and CsNUDX7 were high in fruits, while the expression levels of CsNUDX22 and CsNUDX25 were extremely low in fruits, and the expression level of CsNUDX30 was extremely low in old leaves. In addition, the results of real-time fluorescence quantitative PCR show that the expression levels of CsNUDXs, such as CsNUDX1, CsNUDX2 and CsNUDX33 increased first, then decreased and then increased under the treatment of 1 mmol·L-1 MeJA. However, under the treatment of 1 mmol·L-1 SA, the expression levels of CsNUDX4, CsNUDX12 and CsNUDX22 decreased first, then increased and then decreased. While under the treatment of 300 mmol·L-1 NaCl, the expression levels of CsNUDX2, CsNUDX4 and CsNUDX22 increased first and then decreased. In summary, the basic characteristics and functions of CsNUDXs were preliminarily analyzed by bioinformatics technology, and it was found that CsNUDXs could respond to high salt stress, MeJA and SA treatments.
[1] Mildvan A S, Xia Z, Azurmendi H F, et al.Structures and mechanisms of Nudix hydrolases[J]. Archives of Biochemistry and Biophysics, 2005, 433(1): 129-143.
[2] Bessman M J, Frick D N, O'Handley S F. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes[J]. The Journal of Biological Chemistry, 1996, 271(41): 25059-25062.
[3] McLennan A G. The Nudix hydrolase superfamily[J]. Cellular and Molecular Life Sciences, 2006, 63(2): 123-143.
[4] 和华杰. 桃PpNUDX8基因响应干旱胁迫的分子机制研究[D]. 泰安: 山东农业大学, 2022.
He H J.Molecular mechanism ofPpNUDX8gene response to drought stress in peach [D]. Tai'an: Shandong Agricultural University, 2022.
[5] Ogawa T, Yoshimura K, Miyake H, et al.Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1412-1424.
[6] Dong S M, Wang Y C.Correction: Nudix effectors: a common weapon in the arsenal of plant pathogens[J]. Plos Pathogens, 2016, 12(10): e1005970. doi: 10.1371/journal.ppat.1005970.
[7] Ogawa T, Ishikawa K, Harada K, et al.Overexpression of an ADP-ribose pyrophosphatase,AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants[J]. The Plant Journal, 2009, 57(2): 289-301.
[8] Ishikawa K, Yoshimura K, Harada K, et al.AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling[J]. Plant Physiology, 2010, 152(4): 2000-2012.
[9] 尹虹.AtNUDX6/7基因缺失型拟南芥基因芯片表达谱的生物信息学分析[J]. 锦州医科大学学报, 2021, 42(5): 30-35.
Yin H.Bioinformatic analysis of expression profiles of gene chip of arabidopsis withAtNUDX6/7gene deletion[J]. Journal of Jinzhou Medical University, 2022, 42(5): 30-35.
[10] Ogawa T, Uedo Y, Yoshimura K, et al.Comprehensive analysis of cytosolic Nudix hydrolases inArabidopsis thaliana[J]. The Journal of Biological Chemistry, 2005, 280(26): 25277-25283.
[11] 窦玲玲, 孙亚如, 赵琴, 等. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123.
Dou L L, Sun Y R, Zhao Q, et al.Genome-wide identification and expression analysis ofNudixgene family in upland cotton[J]. Cotton Science, 2021, 33(2): 112-123.
[12] Bergman M E, Bhardwaj M, Phillips M A.Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose scented geranium (Pelargonium graveolens)[J]. The Plant Journal, 2021, 107(2): 493-510.
[13] 黄河. 甘菊响应盐诱导的分子机理研究[D]. 北京: 北京林业大学, 2012.
Huang H.The molecular mechanism of salt response inChrysanthemum lavandulifolium(Fisch. ex Trautv.) Makino [D]. Beijing: Beijing Forestry University, 2012.
[14] 常玮, 王娟, 于洋, 等. 大豆NUDX基因家族全基因组分析[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9): 27-34.
Chang W, Wang J, Yu Y, et al.Genome-wide analysis of soybeanNUDXgene family[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 27-34.
[15] Wang P P, Wang Z K, Guan L, et al.Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. Journal of Integrative Agriculture, 2022, 21(1): 91-112.
[16] 庞静怡. 茶树核苷水解酶CsNUDX1基因与香叶醇生物合成的研究[D]. 合肥: 安徽农业大学, 2018.
Pang J Y.Studies on tea (Camellia sinensisvar.sinensis) nucleoside hydrolaseCsNUDX1gene and geraniol biosynthesis [D]. Hefei: Anhui Agricultural University, 2018.
[17] Newman L, Duffus A L J, Lee C. Using the free program MEGA to build phylogenetic trees from molecular data[J]. The American Biology Teacher, 2016, 78(7): 608-612.
[18] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[19] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408.
[20] Yoshimura K, Shigeoka S.Versatile physiological functions of the Nudix hydrolase family in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(3): 354-366.
[21] 练珊珊, 张宝会, 姚新转, 等. 茶树CsIQD基因家族的鉴定和表达模式分析[J]. 特产研究, 2021, 43(5): 26-34.
Lian S S, Zhang B H, Yao X Z, et al.Identification and expression pattern analysis of CsIDQ gene family inCamellia sinensisL.[J]. Special Wild Economic Animal and Plant Research, 2021, 43(5): 26-34.
[22] Xu G X, Guo C C, Shan H Y, et al.Divergence of duplicate genes in exon-intron structure[J]. PNAS, 2012, 109(4): 1187-1192.
[23] Ding Y Q, Wang Y, Qiu C, et al.Alternative splicing in tea plants was extensively triggered by drought, heat and their combined stresses[J]. PeerJ, 2020, 8(15): e8258. doi: 10.7717/peerj.8258.
[24] Sun J, Chen S L, Dai S X, et al.Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signaling & Behavior, 2009, 4(4): 261-264.
[25] 彭玉华. 甘菊耐盐性分析及DlBADH基因启动子转化菊花试验[D]. 北京: 北京林业大学, 2011.
Peng Y H.Salt-tolerance analysis ofChrysanthemum lavandlifoliumand transformation ofDlBADHpromoters to chrysanthemum [D]. Beijing: Beijing Forestry University, 2011.
[26] 汪新文. 茉莉酸参与植物逆境胁迫的研究进展[J]. 安徽农学通报, 2008, 14(6): 29-35, 24.
Wang X W.Research progress of jasminic acid participating in plant adversity stress[J]. Anhui Agricultural Science Bulletin, 2008, 14(6): 29-35, 24.
[27] 邢勇翔. 外源茉莉酸甲酯处理影响玫瑰抗旱性与花香合成的机理研究[D]. 扬州: 扬州大学, 2021.
Xing Y X.Study on the affecting mechanism of drought resistance and floral fragrance synthesis by treatment of exogenous methyl jasmonate inRosa rugosa[D]. Yangzhou: Yangzhou University, 2021.
[28] Magnard J L, Roccia A, Caissard J C, et al.Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83.
[29] 臧姝. 玫瑰花香成分生物合成相关基因RrNUDX1和RrDXR的功能验证研究[D]. 扬州: 扬州大学, 2017.
Zang S.Functional verification ofRrNUDX1andRrDXRgene related to biosynthesis of floral constituents inRosa rugosa[D]. Yangzhou: Yangzhou University, 2017.