欢迎访问《茶叶科学》,今天是
研究报告

茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析

  • 胡志航 ,
  • 秦志远 ,
  • 李静文 ,
  • 杨妮 ,
  • 陈益 ,
  • 李彤 ,
  • 庄静
展开
  • 1.南京农业大学园艺学院,茶叶科学研究所,农业农村部华东地区园艺作物生物学与种质创制重点实验室,江苏 南京 210095;
    2.南京农业大学,作物遗传与种质创新利用全国重点实验室,江苏 南京 210095
胡志航,男,博士研究生,主要从事茶树遗传育种与分子生物学研究。

收稿日期: 2022-12-09

  修回日期: 2023-03-02

  网络出版日期: 2023-05-05

基金资助

国家自然科学基金(31870681)、江苏省政策引导类计划(SZ-LYG202126)、江苏高校优势学科建设项目(PAPD)

Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants

  • HU Zhihang ,
  • QIN Zhiyuan ,
  • LI Jingwen ,
  • YANG Ni ,
  • CHEN Yi ,
  • LI Tong ,
  • ZHUANG Jing
Expand
  • 1. Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
    2. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2022-12-09

  Revised date: 2023-03-02

  Online published: 2023-05-05

摘要

茶树是我国重要的经济作物之一,其生长和发育过程中会遭受不同逆境影响,导致茶叶产量和品质下降。捕光色素蛋白复合体(Light-harvesting chlorophyll-protein complex)主要影响植物光合效率,在植物适应环境胁迫方面也发挥着重要作用。为研究茶树捕光色素蛋白复合体的特性,从龙井43克隆获得编码捕光色素蛋白复合体基因CsLhcb2,分析该基因编码蛋白序列特征、进化树、理化性质、亚细胞定位、二级结构、三级结构及其在4 ℃低温处理的表达情况。结果表明,CsLhcb2开放阅读框为798 bp,共编码265个氨基酸;该基因含有典型的Chloroa-b-bind保守结构域;与15种植物的LHCB2氨基酸序列进行多重比对,氨基酸序列的相似度达91.32%。进化树分析显示,CsLHCB2与曼陀罗、东南景天、葡萄亲缘关系较近,与麻竹和毛竹亲缘关系较远。CsLHCB2分子量为28 662.77,理论等电点为5.69,属于亲水性蛋白;亚细胞定位预测结果显示CsLHCB2主要定位在叶绿体中。荧光定量结果显示,CsLhcb2可能参与茶树低温胁迫的过程。常温处理条件下,一个光周期(24 h)内CsLhcb2的相对表达量呈现先上升,后下降趋势,龙井43和舒茶早在光照处理1 h达峰值,白叶1号在光照处理6 h达峰值;4 ℃低温条件下,3个茶树品种中CsLhcb2的表达均在光照处理12 h达到峰值,舒茶早中CsLhcb2表达量较高,分别为龙井43和白叶1号的1.18倍和1.98倍。研究结果为进一步研究茶树捕光色素蛋白复合体在茶树低温响应中的作用提供了参考。

本文引用格式

胡志航 , 秦志远 , 李静文 , 杨妮 , 陈益 , 李彤 , 庄静 . 茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析[J]. 茶叶科学, 2023 , 43(2) : 183 -193 . DOI: 10.13305/j.cnki.jts.2023.02.007

Abstract

Tea is one of the important cash crop in China. Its growth and development will be affected by different adversity, leading to the decline of tea quality and yield. Light-harvesting chlorophyll-protein complex mainly affects the photosynthetic efficiency of plants, and also plays important roles in adaptation to environmental stresses. In order to study the characteristics of the light-harvesting chlorophyll-protein complex in tea plants, the gene CsLhcb2 encoding the light-harvesting protein complex was cloned from tea cultivar ‘Longjing 43’, and the sequence characteristics, phylogenetic tree, physical and chemical properties, subcellular localization, secondary structure, tertiary structure and its expression profiles under low temperature treatment were analyzed. The results show that the open reading frame of CsLhcb2 gene is 798 bp, encoding 265 amino acids. This gene contains a typical of Chloroa-b-bind conservation domain. The similarity of CsLHCB2 amino acid sequence with 15 plant species was 91.32%. Phylogenetic tree analysis shows that the CsLHCB2 protein of tea plant was closely related to Datura stramonium, Sedum alfredii and Vitis vinifera, and far from Dendrocalamus latiflorus and Phyllostachys edulis. The relative molecular weight of CsLHCB2 protein is 28 662.77 and the theoretical isoelectric point is 5.69, which belongs to hydrophilic protein. Subcellular localization prediction results show that CsLHCB2 protein is mainly located in chloroplasts. Quantitative RT-PCR results show that CsLhcb2 gene may participate in the process of low temperature stress in tea plants. Under normal temperature treatment, the relative expression level of CsLhcb2 gene showed a trend of increasing first and then decreasing within a photoperiod (24 h). ‘Longjing 43’ and ‘Shuchazao’ reached their peak value at 1 h after light treatment, and 'Baiyeyihao' reached their peak value at 6 h after light treatment. Under low temperature of 4 ℃ treatment, the expression of Lhcb2 of the three tea cultivars all reached the peak at 12 h of light treatment, among which the expression level of CsLhcb2 in ‘Shuchazao’ was the highest, which was 1.18 and 1.98 times higher than that of ‘Longjing 43’ and ‘Baiyeyihao’, respectively. The results provided a reference for further research on the role of light-harvesting chlorophyll-protein complex response to low temperature in tea plants.

参考文献

[1] Powles S B.Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology, 1984, 35(1): 15-44.
[2] Meng A J, Wen D X, Zhang C Q.Maize seed germination under low-temperature stress impacts seedling growth under normal temperature by modulating photosynthesis and antioxidant metabolism[J]. Frontiers in Plant Science, 2022, 13: 843033. doi: 10.3389/fpls.2022.843033.
[3] Li Y Y, Wang X W, Ban Q Y, et al.Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics, 2019, 20(1): 624. doi: 10.1186/s12864-019-5988-3.
[4] 孙钦秒, 冷静, 李良璧, 等. 高等植物光系统II捕光色素蛋白复合体结构与功能研究的新进展[J]. 植物学通报, 2000, 17(4): 289-301.
Sun Q M, Leng J, Li L B, et al.Recent advances of studies on the structure and function of the light-harvesting chlorophyll A/B-protein complex[J]. Chinese Bulletin of Botany, 2000, 17(4): 289-301.
[5] Crepin A, Caffarri S.Functions and evolution of Lhcb isoforms composing LHCⅡ, the major light harvesting complex of photosystem Ⅱ of green eukaryotic organisms[J]. Current Protein & Peptide Science, 2018, 19(7): 699-713.
[6] Jansson S, Pichersky E, Bassi R, et al.A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants[J]. Plant Molecular Biology Reporter, 1992, 10(3): 242-253.
[7] 胡志航, 金伟刚, 宋丽双, 等. 水稻编码光系统Ⅱ相关捕光色素蛋白Lhcb2基因的克隆与表达分析[J]. 扬州大学学报(农业与生命科学版), 2020, 41(4): 1-8.
Hu Z H, Jin W G, Song L S, et al.Cloning and expression analysis of the Lhcb2 gene encoding light-harvesting complex protein in rice[J]. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 2020, 41(4): 1-8.
[8] 邓永胜. 低温胁迫下番茄PSII捕光天线蛋白基因LeLhcb2的功能分析[D]. 泰安: 山东农业大学, 2014.
Deng Y S.Functional analysis of a tomato PSII light-harvesting antenna protein gene LeLhcb2 under chilling stress [D]. Tai'an: Shandong Agricultural University, 2014.
[9] 李真, 刘明英, 韩小娇, 等. 东南景天捕光叶绿素a/b结合蛋白基因SaLhcb2的分离及功能[J]. 浙江农林大学学报, 2014, 31(6): 838-846.
Li Z, Liu M Y, Han X J, et al.Characterization of a light-harvesting chlorophyll a/b binding protein gene SaLhcb2 in Sedum alfredii[J]. Journal of Zhejiang A&F University, 2014, 31(6): 838-846.
[10] Leoni C, Pietrzykowska M, Kiss A Z, et al.Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis[J]. The Plant Journal, 2013, 76(2): 236-246.
[11] Andersson J, Wentworth M, Walters R G, et al.Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II-effects on photosynthesis, grana stacking and fitness[J]. The Plant Journal, 2003, 35(3): 350-361.
[12] Andersson J, Wentworth M, Horton P, et al.Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation[J]. Plant Cell, 2001, 13(5): 1193-1204.
[13] Xu Y H, Liu R, Yan L, et al.Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(3): 1095-1106.
[14] Lucinski R, Jackowski G.AtFtsH heterocomplex-mediated degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to stresses[J]. Journal of Plant Physiology, 2013, 170(12): 1082-1089.
[15] Allen D J, Ort D R.Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science, 2001, 6(1): 36-42.
[16] 王文丽, 吴致君, 刘志薇, 等. 茶树类黄酮3′-羟化酶基因的克隆与表达特性分析[J]. 茶叶科学, 2017, 37(1): 108-118.
Wang W L, Wu Z J, Liu Z W, et al.Cloning and expression analysis of the gene encoding flavonoid 3′-Hydroxylase in Camellia sinensis[J]. Journal of Tea Science, 2017, 37(1): 108-118.
[17] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6: 19748. doi: 10.1038/srep19748.
[18] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the Method[J]. Methods, 2001, 25(4): 402-408.
[19] Gao C Y, Niu J G, Gao Q C. The application of origin software in the data processing of rock creep experiment [J]. Applied Mechanics and Materials, 2014, 580/581/582/583: 509-513.
[20] 陈思文, 康芮, 郭志远, 等. 茶树CsCML16基因的克隆及其低温胁迫下的表达分析[J]. 茶叶科学, 2021, 41(3): 315-326.
Chen S W, Kang R, Guo Z Y, et al.Cloning and expression analysis of CsCML16 in tea plants (Camellia sinensis) under low temperature stress[J]. Journal of Tea Science, 2021, 41(3): 315-326.
[21] 韩妙华, 滕瑞敏, 李辉, 等. 茶树CsDREB-A2转录因子基因的克隆与非生物胁迫响应分析[J]. 核农学报, 2020, 34(12): 2647-2657.
Han M H, Teng R M, Li H, et al.Cloning of CsDREB-A2 transcription factor gene and it's response to abiotic stress in Camellia sinensis[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2647-2657.
[22] 沈威, 滕瑞敏, 李辉, 等. 茶树MADS-box转录因子基因的克隆与非生物胁迫响应分析[J]. 茶叶科学, 2017, 37(6): 575-585.
Shen W, Teng R M, Li H, et al.Cloning of a MADS-box transcription factor gene from Camellia sinensis and its response toabiotic stresses[J]. Journal of Tea Science, 2017, 37(6): 575-585.
[23] Ganeteg U, Külheim C, Andersson J, et al.Is each light-harvesting complex protein important for plant fitness?[J]. Plant Physiology, 2004, 134(1): 502-509.
[24] 庞磊, 周小生, 李叶云. 应用叶绿素荧光法鉴定茶树品种抗寒性的研究[J]. 茶叶科学, 2011, 31(6): 521-524.
Pang L, Zhou X S, Li Y Y.Study and identification of cold resistance of Camellia sinensis by chlorophyll fluorescence method[J]. Journal of Tea Science, 2011, 31(6): 521-524.
[25] 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013-6019.
Li J J, Yu X D, Cai Z P, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013-6019.
[26] Liu L L, Lin N, Liu X Y, et al.From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves[J]. Frontiers in Plant Science, 2020, 11: 256. doi: 10.3389/fpls.2020.00256.
[27] Paulsen H, Bogorad L.Diurnal and circadian rhythms in the accumulation and synthesis of mRNA for the light-harvesting chlorophyll a/b-binding protein in tobacco[J]. Plant Physiology, 1988, 88(4): 1104-1109.
[28] 孙钦秒, 李良璧, 阎久胜, 等. 光照和温度对豌豆Lhcb2基因表达的影响[J]. 植物学报, 2000, 42(3): 258-262.
Sun Q M, Li L B, Yan J S, et al.Effects of light and temperature on the expression of the Lhcb2 gene in pea[J]. Acta Botanica Sinica, 2000, 42(3): 258-262.
[29] Chang Y C, Walling L L.Abscisic acid negatively regulates expression of chlorophyll a/b binding protein genes during soybean embryogeny[J]. Plant Physiology, 1991, 97(3): 1260-1264.
[30] 卢从明, 唐崇钦, 张其德, 等. 水分胁迫对小麦叶绿体色素蛋白复合体的影响[J]. 植物学报, 1995, 37(12): 950-955.
Lu C M, Tang C Q, Zhang Q D, et al.Effects of water stress on chlorophyll protein complexes in wheat chloroplasts[J]. Acta Botanica Sinica, 1995, 37(12): 950-955.
[31] Jiang Q, Xu Z S, Wang F, et al.Effects of abiotic stresses on the expression of Lhcb1 gene and photosynthesis of Oenanthe javanica and Apium graveolens[J]. Biologia Plantarum, 2014, 58(2): 256-64.
文章导航

/