欢迎访问《茶叶科学》,今天是
研究报告

植物激素对茶树春季新梢生长发育的调控作用研究

  • 李聪聪 ,
  • 王浩乾 ,
  • 叶玙璠 ,
  • 陈瑶 ,
  • 任恒泽 ,
  • 李宇腾 ,
  • 郝心愿 ,
  • 王新超 ,
  • 曹红利 ,
  • 岳川
展开
  • 1.中国农业科学院茶叶研究所/国家茶树改良中心/农业农村部特种经济动植物生物学与遗传育种重点实验室,浙江 杭州 310008;
    2.福建农林大学园艺学院,福建 福州 350002;
    3.西南大学食品科学学院,重庆 400715
李聪聪,女,硕士研究生,主要从事茶树生物技术方面的研究。

收稿日期: 2023-02-15

  修回日期: 2023-03-20

  网络出版日期: 2023-06-29

基金资助

国家自然科学基金项目(32172632,31972461)、中国农业科学院基本科研业务费专项(Y2021PT07)、农业科技创新工程(CAAS-ASTIP-2021-TRICAAS)

Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring

  • LI Congcong ,
  • WANG Haoqian ,
  • YE Yufan ,
  • CHEN Yao ,
  • REN Hengze ,
  • LI Yuteng ,
  • HAO Xinyuan ,
  • WANG Xinchao ,
  • CAO Hongli ,
  • YUE Chuan
Expand
  • 1. Tea Research Institute, Chinese Academy of Agriculture Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China;
    2. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. College of Food Science, Southwest University, Chongqing 400715, China

Received date: 2023-02-15

  Revised date: 2023-03-20

  Online published: 2023-06-29

摘要

激素在植物生长发育调控中发挥重要作用,为明确不同激素对茶树新梢生长发育的影响,挖掘参与调控这一过程的主要通路和关键基因,以龙井43为试材,在茶树处于萌动期时分别进行100 μmol·L-1脱落酸(ABA)、100 μmol·L-1赤霉素(GA3)和100 μmol·L-1吲哚-3-乙酸(IAA)喷施处理,观察新梢萌发表型,并对处理后第7天的新梢进行转录组测序分析。结果显示,外源ABA处理抑制新梢生长,处理7 d后芽长极显著短于对照;GA3和IAA处理则具有促进作用,GA3处理7 d芽长极显著长于对照,IAA处理14 d芽长极显著长于对照。转录组分析表明,ABA处理新梢中的氨基酸生物合成通路、GA3处理的氧化磷酸化通路和光合作用通路及IAA处理的类黄酮生物合成通路是差异基因富集的主要通路;植物激素通路、光合作用通路相关的GAI、PSBO2、PSBQ-2PSBP-1可能是参与新梢生长发育的关键基因。对部分候选基因的表达模式进行实时荧光定量验证,表明转录组分析结果可靠。以上研究明确了激素影响茶树新梢生长发育的主要通路和关键基因,将为全面揭示茶树新梢生长发育调控机制提供理论依据。

本文引用格式

李聪聪 , 王浩乾 , 叶玙璠 , 陈瑶 , 任恒泽 , 李宇腾 , 郝心愿 , 王新超 , 曹红利 , 岳川 . 植物激素对茶树春季新梢生长发育的调控作用研究[J]. 茶叶科学, 2023 , 43(3) : 335 -348 . DOI: 10.13305/j.cnki.jts.2023.03.002

Abstract

Hormones play important roles in the regulation of plant growth and development. In order to clarify the effects of different hormones on the growth and development of tea shoots in spring, and to identify the main pathways and key genes involved, tea cultivar ‘Longjing 43’ was used as the experimental materials, and treated with 100 μmol·L-1 ABA, 100 μmol·L-1 GA3 and 100 μmol·L-1 IAA respectively in the sprouting period. The phenotypic characteristics of buds were determined, and the buds at the 7th day after treatments were investigated using RNA-Seq technique. The results show that exogenous ABA treatment inhibited the germination and growth of shoots, and the length of shoots was significantly shorter than the control after 7 days after treatment. On the other hand, GA3 and IAA treatments had a promoting effect, and the bud length was significantly extended on the 7th day after GA3 treatment and on the 14th day after IAA treatment. RNA-Seq analysis indicates differentially expressed genes were mainly enriched in amino acid biosynthesis pathway under ABA treatment, oxidative phosphorylation pathway and photosynthesis pathway under GA3 treatment, and flavonoid biosynthesis pathway under IAA treatment. GAI, PSBO2, PSBQ-2 and PSBP-1 related to plant hormone and photosynthesis pathways might be the key genes involved in shoot growth and development. The real-time fluorescence quantitative PCR results of some candidate genes were consistent with the RNA-Seq results. The above studies identified the main pathways and key genes involved in the hormone regulation on tea shoot growth and development, which provided a theoretical basis for deeply revealing the regulation mechanism of tea shoot growth and development.

参考文献

[1] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5): 382-392.
Yue C, Zeng J M, Zhang Z F, et al.Research progress in thephytohormone of tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2012, 32(5): 382-392.
[2] 王雷刚. 茶树中脱落酸分解代谢基因对休眠解除的影响[D]. 合肥: 安徽农业大学, 2018.
Wang L G.Effect of abscisic acid catabolic genes on dormancy release in tea plants[D]. Hefei: Anhui Agricultural University, 2018.
[3] 刘春香, 曹齐卫, 于玉梅, 等. 外源激素及内源激素对黄瓜果实发育的影响[J]. 安徽农业科学, 2011, 39(18): 10772-10774.
Liu C X, Cao Q W, Yu Y M, et al.Effects of exogenous hormone treatments on the fruit development of cucumber and analysis on its endogenous[J]. Anhui Agricultural Science, 2011, 39(18): 10772-10774.
[4] 孙刚, 张文学, 李祖章, 等. 不同激素对早稻剑叶和根系衰老特性影响的研究[J]. 江西农业学报, 2009, 21(2): 11-14.
Sun G, Zhang W X, Li Z Z, et al.Study on effect of different hormones on senescence of flag leaf and root system of early rice[J]. Acta Agriculturae Jiangxi, 2009, 21(2): 11-14.
[5] Shi J, Wang N, Zhou H, et al.Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.)[J]. BMC Plant Biology, 2020, 20(1): 1-14.
[6] 路超, 聂佩显, 王来平, 等. 喷施植物生长调节剂对苹果变产树新梢生长及梢叶矿质元素和内源激素含量的影响[J]. 烟台果树, 2018(4): 7-9.
Lu C, Nie P X, Wang L P, et al.Effects of spraying plant growth regulators on the growth of new shoots and the content of mineral elements and endogenous hormones in shoots and leaves of apple variety trees[J]. Yantai Fruits, 2018(4): 7-9.
[7] Yuan C, Sagheer A, Tangren C, et al.Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in chrysanthemum (Dendranthema grandiflorum ‘Jinba’)[J]. International Journal of Molecular Sciences, 2018, 19(6): 1590-1611.
[8] Müller D, Leyser O.Auxin, cytokinin and the control of shoot branching[J]. Annals of Botany, 2011, 107(7): 1203-1212.
[9] Ni J, Gao C, Chen M S, et al.Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas[J]. Plant and Cell Physiology, 2015, 8(56): 1655-1666.
[10] Yao C, Finlayson S A.Abscisic acid is a general negative regulator of arabidopsis axillary bud growth[J]. Plant Physiology, 2015, 169(1): 611-626.
[11] Matthias A, Jörg-peter S, Barbara E, et al. Expression of the arabidopsis mutant abi1 gene alters abscisic acid sensitivity, stomatal developmentand growth morphology in gray poplars1[J]. Plant physiology, 2009, 151(4): 2110-2119.
[12] Thimann K V, Skoog F.Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development[J]. Proceedings of the National Academy of Sciences of the United States of America, 1933, 19(7): 714-716.
[13] Yang L, Zhu S, Xu J.Roles of auxin in the inhibition of shoot branching in 'Dugan' fir[J]. Tree Physiology, 2022, 42(7): 1411-1431.
[14] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理(第一报)茶树新梢生育过程激素水平的季节变化[J]. 茶叶, 2000, 16(3): 139-143.
Pan G S, Shen S R, Qian L S, et al.Endogenous hormone level and its regulation mechanism during growth of tea plant shoot (Ⅰ) changes of hormone content in the growth of tea plant shoot[J]. Journal of Tea, 2000, 16(3): 139-143.
[15] 贺群. 外源吲哚乙酸对茶树响应镉胁迫的影响[D]. 长沙: 湖南农业大学, 2019.
He Q.The impact of exogenous indole-3-acetic acid on tea (Camellia sinensis (L.) O. Kuntze) exposed to cadmium[D]. Changsha:: Hunan Agricultural University, 2019.
[16] Wang X, Feng H, Chang Y, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447-4457.
[17] Hao X, Horvath D, Chao W, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
[18] Zhuang W, Gao Z, Wen L, et al.Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA[J]. Horticulture Research, 2015, 2(1): 15046-15056.
[19] 卢环, 王成, 曾玲玲, 等. 不同生长时期喷施外源ABA对绿豆农艺性状及产量的影响[J]. 中国农业文摘(农业工程), 2022, 34(2): 91-93.
Lu H, Wang C, Zeng L L, et al.Effects of spraying exogenous ABA at different growth stages on agronomic characters and yield of mung bean[J]. Agricultural Science and Engineering in China, 2022, 34(2): 91-93.
[20] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理[J]. 茶叶, 2001, 27(1): 35-38.
Pan G S, Qian L S, Wu B Q, et al.Endogenous hormone level and its regulation mechanism during growth of tea plant shoot[J]. Journal of Tea, 2001, 27(1): 35-38.
[21] 宋佳琦, 王玉祥, 张博. 内源激素变化及外源生长素对紫花苜蓿种子萌发过程的影响[J]. 草地学报, 2018, 26(3): 691-696.
Song J Q, Wang Y X, Zhang B.Effects of endogenous hormone change and exogenous auxin on the germination process of alfalfa seed[J]. Acta Agrestia Sinica, 2018, 26(3): 691-696.
[22] Peng J R, Carol P, Richards D E, et al.The arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1998, 11(23): 3194-3205.
[23] 蒋梦婷, 朱宁, 龚洪泳, 等. ‘南通小方柿’赤霉素不敏感基因DkGAI2的克隆与功能分析[J]. 中国农业科学, 2019, 52(19): 3417-3429.
Jiang M T, Zhu N, Gong H Y, et al.Cloning and function analysis of gibberellin insensitive DkGAI2 gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi)[J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[24] Yuan L, Xu D Q.Stimulatory effect of exogenous GA3 on photosynthesis and the level of endogenous GA1+3 in soybean leaf[J]. Journal of Plant Physiology and Molecular Biology, 2002, 28(4): 317-320.
[25] 张丽丽, 张战, 赵一洲, 等. 外源赤霉素对盐胁迫下水稻幼苗生长及生理基础的影响[J]. 北方水稻, 2013, 43(3): 4-7.
Zhang L L, Zhang Z, Zhao Y Z, et al.Effect of exogenous GA3 on the growth and physiological basis of rice seedling under NaCl stress[J]. North Rice, 2013, 43(3): 4-7.
[26] 于勇, 翁俊, 徐春和. 植物光系统Ⅱ放氧复合体外周蛋白结构和功能的研究进展[J]. 植物生理学报, 2001, 27(6): 441-450.
Yu Y, Weng J, Xu C H.Progress in the study of the structure and function of plant photosystem II oxygen release complex periprotein in vitro[J]. Acta Phytophysiologica Sinica, 2001, 27(6): 441-450.
[27] 何春艳, 尹淑霞. 类黄酮物质对生长素作用的研究进展[J]. 分子植物育种, 2018, 16(16): 5449-5462.
He C Y, Yin S X.Research progress on the effect offlavonoids on growth hormone[J]. Molecular Plant Breeding, 2018, 16(16): 5449-5462.
[28] 周青. 类黄酮及其植物生理学作用[J]. 生物学通报, 1986(12): 1-2.
Zhou Q.Flavonoids and their plant physiological functions[J]. The Biological Bulletin, 1986(12): 1-2.
[29] 张亚真, 张芬, 王丽鸳, 等. 植物谷胱甘肽转移酶在类黄酮累积中的作用[J]. 植物生理学报, 2015, 51(11): 1815-1820.
Zhang Y Z, Zhang F, Wang L Y, et al.Plant glutathione S-transferases: roles in flavonoid accumulation[J]. Plant Physiology Journal, 2015, 51(11): 1815-1820.
文章导航

/