欢迎访问《茶叶科学》,今天是
研究报告

EGCG改善高果糖饮食小鼠代谢紊乱的作用与机制研究

  • 周继红 ,
  • 陈蔚 ,
  • 丁乐佳 ,
  • 王岳飞
展开
  • 浙江大学茶叶研究所,浙江 杭州 310058
周继红,女,特聘副研究员,主要从事茶叶生物化学与人体健康研究,zhoujihong@zju.edu.cn。

收稿日期: 2022-12-12

  修回日期: 2023-04-27

  网络出版日期: 2023-06-29

基金资助

国家自然科学基金区域创新联合基金(U19A2034)

Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice

  • ZHOU Jihong ,
  • CHEN Wei ,
  • DING Lejia ,
  • WANG Yuefei
Expand
  • Tea Research Institute, Zhejiang University, Hangzhou 310058, China

Received date: 2022-12-12

  Revised date: 2023-04-27

  Online published: 2023-06-29

摘要

为探究表没食子儿茶素没食子酸酯(EGCG)对高果糖饮食诱导代谢紊乱的作用功效及机制,将15只雄性SPF级C57BL/6小鼠随机分为3组:正常饮食组(NCD)、高果糖饮食组(HFD)和高果糖补充1% EGCG饮食组(HFE)。饲喂8周后测定小鼠的体质量、能量利用率、ALT和AST含量及组织形态学染色等参数。ELISA检测肝脏TNF-α、IL-1β、IL-6和肠道IL-6炎症因子水平,实时荧光定量PCR检测肝脏Srebp-1cTlr4Myd88及肠道Zo-1Tlr4Myd88基因表达水平,免疫组化检测ZO-1、Occludin蛋白表达水平。试验表明,膳食补充EGCG能够有效抑制高果糖饮食诱导的小鼠体重增加、脂肪积累、肝脏及肠道炎症因子释放,并可上调肠壁完整性相关的Zo-1基因表达水平和ZO-1、Occludin蛋白表达水平,下调肝脏中脂质代谢相关的Srebp-1c基因表达水平,下调肠道和肝脏中炎症相关的Tlr4Myd88基因表达水平。以上结果表明,膳食补充EGCG对高果糖饮食诱导的代谢障碍和炎症反应有一定的预防作用,其机理可能与TLR4/MyD88信号通路介导的肠-肝轴调控机制有关。

本文引用格式

周继红 , 陈蔚 , 丁乐佳 , 王岳飞 . EGCG改善高果糖饮食小鼠代谢紊乱的作用与机制研究[J]. 茶叶科学, 2023 , 43(3) : 399 -410 . DOI: 10.13305/j.cnki.jts.2023.03.012

Abstract

This study investigated the effects and mechanisms of epigallocatechin gallate (EGCG) on high-fructose diet-induced metabolic disorders. Fifteen male SPF C57BL/6 mice were randomly divided into three groups: normal diet group (NCD), high-fructose diet group (HFD), and high-fructose diet supplemented with 1% EGCG group (HFE), with 5 mice in each group. After 8 weeks of feeding, the body weight, energy utilization rate, ALT and AST levels, as well as tissue morphology staining of the mice were measured. Furthermore, hepatic TNF-α, IL-1β, IL-6 and intestinal IL-6 inflammatory cytokine levels were detected by ELISA. The expressions of Srebp-1c, Tlr4, Myd88 in liver and Zo-1, Occludin, Tlr4 and Myd88 in intestine were measured by quantitative real-time PCR. Protein expressions of ZO-1 and Occludin were detected by IHC. The results show that dietary supplementation of EGCG could effectively reduce high-fructose diet-induced body weight gain, fat accumulation, hepatic and intestinal inflammatory responses, and could improve the intestinal barrier function by upregulating the expression of Zo-1 and the protein expressions of ZO-1 and Occludin. It also modulated lipid metabolism by reducing the expression level of Srebp-1c in liver, and downregulated the expression levels of inflammatory-related genes (Tlr4 and Myd88) in colon and liver. The results above suggest that dietary supplementation of EGCG has a preventive effect on high-fructose diet-induced metabolic disorders and inflammatory responses, and its mechanism may be related to the regulation of the gut-liver axis mediated by the TLR4/MyD88 signaling pathway.

参考文献

[1] 任志斌, 徐培培, 张倩, 等. 2019—2021年中国11~14岁儿童甜食摄入量与近视的关系[J]. 卫生研究, 2022, 51(5): 713-719.
Ren Z B, Xu P P, Zhang Q, et al.Relationship between sugary food intake and myopia in 11-14 years old Chinese children in 2019-2021[J]. Journal of Hygiene Research, 2022, 51(5): 713-719.
[2] Hattori H, Hanai Y, Oshima Y, et al.Excessive intake of high-fructose corn syrup drinks induces impaired glucose tolerance[J]. Biomedicines, 2021, 9(5): 541. doi: 10.3390/biomedicines9050541.
[3] 张琪, 高惠英. 肥胖相关因素介导免疫炎症机制在痛风中的研究进展[J]. 中国临床研究, 2021, 34(11): 1574-1577.
Zhang Q, Gao H Y.Progress on obesity-related factors mediating immune-inflammatory mechanisms in gout[J]. Chinese Journal of Clinical Research, 2021, 34(11): 1574-1577.
[4] 张芹, 周中凯, 任晓冲. 高通量测序技术研究高糖饮食对小鼠肠道菌群的影响[J]. 食品安全质量检测学报, 2015, 6(5): 1776-1782.
Zhang Q, Zhou Z K, Ren X C.Comparision of intestinal microbiota in mice with normal and high-sugar diet using Miseq high-throughput sequencing[J]. Journal of Food Safety & Quality, 2015, 6(5): 1776-1782.
[5] Janevski M, Ratnayake S, Siljanovski S, et al.Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat[J]. Food & Function, 2012, 3(2): 141-149.
[6] Softic S, Meyer J G, Wang G X, et al.Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins[J]. Cell Metabolism, 2019, 30(4): 735-753.
[7] Ren Z K, Yang Z Y, Lu Y, et al.Anti-glycolipid disorder effect of epigallocatechin3gallate on high-fat diet and STZ-induced T2DM in mice[J]. Molecular Medicine Reports, 2020, 21(6): 2475-2483.
[8] Xu L L, Li W W, Chen Z Q, et al.Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells[J]. International Journal of Biological Macromolecules, 2019, 125: 605-611.
[9] Payne A, Nahashon S, Taka E, et al.Epigallocatechin-3-gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age[J]. Biomolecules, 2022, 12(3): 371. doi: 10.3390/biom12030371.
[10] Wang M, Zhong H, Zhang X, et al.EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response[J]. Scientific Reports, 2021, 11(1): 11014. doi: 10.1038/s41598-021-90398-x.
[11] Friedrich M, Petzke K J, Raederstorff D, et al.Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet[J]. International Journal of Obesity, 2012, 36(5): 735-743.
[12] Sae-tan S, Grove K A, Lambert J D. Weight control and prevention of metabolic syndrome by green tea[J]. Pharmacological Research, 2011, 64(2): 146-154.
[13] 周继红, 余月儿, 丁乐佳, 等. 抹茶对高脂饮食诱导的小鼠肝脏脂质积累和炎症反应的保护作用及机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 525-532.
Zhou J H, Yu Y E, Ding L J, et al.Protective effect and mechanism of matcha on liver lipid accumulation and inflammatory response induced by high-fat diet in mice[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2022, 48(4): 525-532.
[14] 周继红. EGCG对高脂饮食诱导肥胖小鼠棕色脂肪活性及下丘脑炎症通路的调控作用研究[D]. 杭州: 浙江大学, 2019.
Zhou J H.Effects of EGCG on brown adipose tissue activation and hypothalamic inflammatory pathway in obese mice fed a high-fat diet[D]. Hangzhou: Zhejiang University, 2019.
[15] Rodrigues N, Peng M, Oey I, et al.Glycaemic, uricaemic and blood pressure response to beverages with partial fructose replacement of sucrose[J]. European Journal of Clinical Nutrition, 2018, 72(12): 1717-1723.
[16] Gao T L, Tian C Y, Tian G, et al.Excessive fructose intake inhibits skeletal development in adolescent rats via gut microbiota and energy metabolism[J]. Frontiers in Microbiology, 2022, 13: 952892. doi: 10.3389/fmicb.2022.952892.
[17] Hernandez-Diazcouder A, Romero-Nava R, Carbo R, et al.High fructose intake and adipogenesis[J]. International Journal of Molecular Sciences, 2019, 20(11): 2787. doi: 10.3390/ijms20112787.
[18] 徐春花, 何卓俊, 曾立, 等. 肥胖的发病机制以及药物治疗研究概况[J]. 中国疗养医学, 2021, 30(2): 131-135.
Xu C H, He Z J, Zeng L, et al.Research overview of the pathogenesis of obesity and drug therapy[J]. Chinese Journal of Convalescent Medicine, 2021, 30(2): 131-135.
[19] Seo K, Yokoyama W, Kim H.Comparison of polyphenol-rich wine grape seed flour-regulated fecal and blood microRNAs in high-fat, high-fructose diet-induced obese mice[J]. Journal of Functional Foods, 2020, 73: 104147. doi: 10.1016/j.jff.2020.104147.
[20] Han X, Li W F, Huang D, et al.Polyphenols from hawthorn peels and fleshes differently mitigate dyslipidemia, inflammation and oxidative stress in association with modulation of liver injury in high fructose diet-fed mice[J]. Chemico-Biological Interactions, 2016, 257: 132-140.
[21] Yamamoto M, Yoshioka Y, Kitakaze T, et al.Preventive effects of black soybean polyphenols on non-alcoholic fatty liver disease in three different mouse models[J]. Food & Function, 2022, 13(2): 1000-1014.
[22] 程倩. 黄酮预防代谢综合征的功能评价与作用机理研究[D]. 北京: 中国农业大学, 2014.
Cheng Q.Functional evaluation of different flavonoids in the prevention of metabolic syndrome and their mechanisms[D]. Beijing: China Agricultural University, 2014.
[23] Mi Y, Qi G, Fan R, et al.EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2017, 1863(6): 1575-1589.
[24] Febbraio M A, Karin M."Sweet death": fructose as a metabolic toxin that targets the gut-liver axis[J]. Cell Metabolism, 2021, 33(12): 2316-2328.
[25] Varol C, Zigmond E, Jung S.Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria[J]. Nature Reviews Immunology, 2010, 10(6): 415-426.
[26] Nagarajan S R, Cross E, Sanna F, et al.Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism[J]. Proceedings of the Nutrition Society, 2022, 81(1): 1-11.
[27] Jones N, Blagih J, Zani F, et al.Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation[J]. Nature Communication, 2021, 12(1): 1209. doi: 10.1038/s41467-021-21461-4.
[28] Olofsson C, Eriksson M, Helin A C B, et al. Effects of acute fructose loading on markers of inflammation: a pilot study[J]. Nutrients, 2021, 13(9): 3110. doi: 10.3390/nu13093110.
[29] Singh S, Sharma A, Guru B, et al.Fructose-mediated NLRP3 activation induces inflammation and lipogenesis in adipose tissue[J]. The Journal of Nutritional Biochemistry, 2022, 107: 109080. doi: 10.1016/j.jnutbio.2022.109080.
[30] Tu Y F, Wang L, Rong Y, et al.Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats[J]. Elife, 2021, 10: e58820. doi: 10.7554/eLife.58820.
[31] Li H L, Xie Z Y, Zhang Y, et al.Rosa rugosa polysaccharide attenuates alcoholic liver disease in mice through the gut-liver axis[J]. Food Bioscience, 2021, 44: 101385. doi: 10.1016/j.fbio.2021.101385.
[32] Hu M Y, Zhang L, Ruan Z, et al.The regulatory effects of citrus peel powder on liver metabolites and gut flora in mice with non-alcoholic fatty liver disease (NAFLD)[J]. Foods, 2021, 10(12): 3022. doi: 10.3390/foods10123022.
[33] Wilkinson N J, Peng L N, Doran J E, et al.Examination of the interplay between membrane tension and the tight junction protein, ZO-1[J]. The FASEB Journal, 2022, 36(s1): R4270. doi: 10.1096/fasebj.2022.36.S1.R4270.
[34] 伍振辉, 孟娴, 胡佳伟, 等. TLR4-MyD88-NF-kB信号通路与肝炎-肝纤维化-肝癌轴相关性研究进展[J]. 国际药学研究杂志, 2017, 44(5): 396-401.
Wu Z H, Meng X, Hu J W, et al.Research progress on the correlation between TLR4-MyD88-NF-κB signalling pathways and the hepatic inflammation-fibrosis-cancer axis[J]. Journal of International Pharmaceutical Research, 2017, 44(5): 396-401.
[35] Wu C P, Bi Y J, Liu D M, et al.Hsa-miR-375 promotes the progression of inflammatory bowel disease by upregulating TLR4[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(17): 7543-7549.
[36] Mir H, Meena A S, Chaudhry K K, et al.Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. Biochimica et Biophysica Acta, 2016, 1860(4): 765-774.
[37] Wei R, Liu X, Wang Y, et al.(-)-Epigallocatechin-3-gallate mitigates cyclophosphamide-induced intestinal injury by modulating the tight junctions, inflammation and dysbiosis in mice[J]. Food & Function, 2021, 12(22): 11671-11685.
[38] Dey P, Olmstead B D, Sasaki G Y, et al.Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota[J]. The Journal of Nutritional Biochemistry, 2020, 84: 108455. doi: 10.1016/j.jnutbio.2020.108455.
[39] Yang N, Shang Y X.Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model[J]. International Immunopharmacology, 2019, 72: 422-428.
[40] Li H X, Qiao C, Zhao L Y, et al.Epigallocatechin-3-gallate reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis[J]. Journal of Leukocyte Biology, 2022, 112(6): 1427-1443.
文章导航

/