[1] 程利增, 朱将雄, 周慧, 等. 茶多糖提取纯化、结构活性及应用研究进展[J]. 中国茶叶, 2021, 43(8): 7-15.
Cheng L Z, Zhu J X, Zhou H, et al.Research progress on the extraction, purification, structures, activities and application of tea polysaccharides[J]. China Tea, 2021, 43(8): 7-15.
[2] 翁昆, 张亚丽. GB/T 30766—2014《茶叶分类》简介[J]. 中国标准导报, 2015(1): 34-35.
Weng K, Zhang Y L.Introduction to GB/T 30766-2014 "Classification of Tea"[J]. China Quality and Standards Review, 2015(1): 34-35.
[3] 欧阳建, 周方, 卢丹敏, 等. 茶多糖调控肥胖作用研究进展[J]. 茶叶科学, 2020, 40(5): 565-575.
Ouyang J, Zhou F, Lu D M, et al.Research progress of tea polysaccharides in regulating obesity[J]. Journal of Tea Science, 2020, 40(5): 565-575.
[4] Chen G, Yuan Q, Saeeduddin M, et al.Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678.
[5] 翁蔚, 李书魁, 张琴梅, 等. 茶多糖的组成与保健功效研究进展[J]. 中华中医药杂志, 2021, 36(12): 7261-7264.
Weng W, Li S K, Zhang Q M, et al.Research progress of composition and health function of tea polysaccharide[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(12): 7261-7264.
[6] 李东旭, 陈富桥. 基于CiteSpace文献计量分析的中国茶产业经济研究现状与展望[J]. 华中农业大学学报, 2022, 41(5): 57-67.
Li D X, Chen F Q.Situation and prospect of studies on tea industry in China based on CiteSpace bibliometnic analysis[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 57-67.
[7] 张鑫, 王吉, 胡静荣, 等. 基于Citespace和文献计量分析平台的鱼糜研究可视化分析[J]. 食品科学, 2023, 44(1): 362-370.
Zhang X, Wang J, Hu J R, et al.Visual analysis of surimi research based on Citespace and bibliometric analysis platform[J]. Food Science, 2023, 44(1): 362-370.
[8] Sun Y Q, Wu S M, Gong G Y.Trends of research on polycyclic aromatic hydrocarbons in food: a 20-year perspective from 1997 to 2017[J]. Trends in Food Science & Technology, 2019, 83: 86-98.
[9] Chen S Y, Han R, Liu H T.A bibliometric and visualization analysis of intermittent fasting[J]. Frontiers in Public Health, 2022, 10: 946795. doi: 10.3389/fpubh.2022.946795.
[10] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
Chen Y, Chen C M, Liu Z Y, et al.The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253.
[11] 周钰, 刘庆梅, 张军, 等. 基于Citespace对抗食物过敏研究领域的可视化分析[J]. 中国食品学报, 2021, 21(6): 366-374.
Zhou Y, Liu Q M, Zhang J, et al.Visualization analysis of anti food allergy reasearch based on Citespace[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 366-374.
[12] 吴晓秋, 吕娜. 基于关键词共现频率的热点分析方法研究[J]. 情报理论与实践, 2012, 35(8): 115-119.
Wu X Q, Lü N.Research on the hot spot analysis method based on keyword co occurrence frequency[J]. Information Studies: Theory & Application, 2012, 35(8): 115-119.
[13] Li X, Chen S, Li J E, et al.Chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist tea[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1915967. doi: 10.1155/2019/1915967.
[14] Guo L, Guo J C, Zhu W C, et al.Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities[J]. Food and Bioproducts Processing, 2016, 100: 303-310.
[15] 穆军芳, 张丽鑫, 杨光. 基于WOS的国际农业生态学研究热点与前沿探究[J]. 中国生态农业学报(中英文), 2022: 1-12. [2023-05-09]. 基于WOS的国际农业生态学研究热点与前沿探究[J]. 中国生态农业学报(中英文), 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13.1432.S.20221228.1328.002.html.
Mu J F, Zhang L X, Yang G, et al. A Study on the research hotspots and emerging trends of international agroecology based on WOS [J]. Chinese Journal of Eco-Agriculture, 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13.1432.S.20221228.1328.002.html.
[16] Qu J L, Huang P, Zhang L, et al.Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship[J]. International Journal of Biological Macromolecules, 2020, 161: 24-34.
[17] Xu Y L, Wang Y J, He J L, et al.Antibacterial properties of lactoferrin: a bibliometric analysis from 2000 to early 2022[J]. Frontiers in Microbiology, 2022, 13: 947102. doi: 10.3389/fmicb.2022.947102.
[18] Chen G J, Zeng Z Q, Xie M H, et al.Fermentation characteristics and probiotic activity of a purified fraction of polysaccharides from Fuzhuan brick tea[J]. Food Science and Human Wellness, 2022, 11(3): 727-737.
[19] Li H S, Fang Q Y, Nie Q X, et al.Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration[J]. Journal of Agricultural and Food Chemistry, 2020, 68(37): 10015-10028.
[20] Liu X L, Hu G S, Wang A H, et al.Black tea reduces diet-induced obesity in mice via modulation of gut microbiota and gene expression in host tissues[J]. Nutrients, 2022, 14(8): 1635. doi: 10.3390/nu14081635.
[21] Wang Y L, Zhao Y, Andrae-Marobela K, et al.Tea polysaccharides as food antioxidants: an old woman’s tale?[J]. Food Chemistry, 2013, 138(2/3): 1923-1927.
[22] Lu X S, Zhao Y, Sun Y F, et al.Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects[J]. Food Chemistry, 2013, 141(4): 3415-3423.
[23] Xu P, Wu J, Zhang Y, et al.Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α-glycosidase inhibition[J]. Journal of Functional Foods, 2014, 6: 545-554.
[24] Chen G J, Xie M H, Wan P, et al.Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea[J]. Food Chemistry, 2018, 244: 331-339.
[25] Chen D, Chen G J, Ding Y, et al.Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression[J]. Journal of Functional Foods, 2019, 61: 103470. doi: 10.1016/j.jff.2019.103470.
[26] Wu D T, Liu W, Yuan Q, et al.Dynamic variations in physicochemical characteristics of oolong tea polysaccharides during simulated digestion and fecal fermentation in vitro[J]. Food Chemistry: X, 2022, 14: 100288. doi: 10.1016/j.fochx.2022.100288.
[27] Chen H, Huang Y Z, Zhou C C, et al.Effects of ultra-high pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea[J]. Food Chemistry, 2022, 387: 132862. doi: 10.1016/j.foodchem.2022.132862.
[28] Jin F, Jia L Y, Tu Y Y.Structural analysis of an acidic polysaccharide isolated from white tea[J]. Food Science and Biotechnology, 2015, 24(5): 1623-1628.
[29] Nie S P, Xie M Y.A review on the isolation and structure of tea polysaccharides and their bioactivities[J]. Food Hydrocolloids, 2011, 25(2): 144-149.
[30] Wang Q, Yang X Y, Zhu C W, et al.Advances in the utilization of tea polysaccharides: preparation, physicochemical properties, and health benefits[J]. Polymers, 2022, 14(14): 2775. doi: 10.3390/polym14142775.
[31] Xu A A, Lai W Y, Chen P, et al.A comprehensive review on polysaccharide conjugates derived from tea leaves: composition, structure, function and application[J]. Trends in Food Science & Technology, 2021, 114: 83-99.
[32] Qin H N, Huang L, Teng J W, et al.Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry, 2021, 353: 129419. doi: 10.1016/j.foodchem.2021.129419.
[33] Xiang G, Sun H P, Chen Y Y, et al.Antioxidant and hypoglycemic activity of tea polysaccharides with different degrees of fermentation[J]. International Journal of Biological Macromolecules, 2023, 228: 224-233.
[34] Sun X Y, Wang J M, Ouyang J, et al.Antioxidant activities and repair effects on oxidatively damaged HK-2 cells of tea polysaccharides with different molecular weights[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 5297539. doi: 10.1155/2018/5297539.
[35] Zhang X, Chen H X, Zhang N, et al.Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea[J]. Food Research International, 2013, 53(2): 726-731.
[36] Wang Y F, Mao F F, Wei X L.Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea[J]. Carbohydrate Polymers, 2012, 88(1): 146-153.
[37] Zhu J X, Yu C, Han Z, et al.Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides[J]. International Journal of Biological Macromolecules, 2020, 154: 1408-1418.
[38] Junker F, Michalski K, Guthausen G, et al.Characterization of covalent, feruloylated polysaccharide gels by pulsed field gradient-stimulated echo (PFG-STE)-NMR[J]. Carbohydrate Polymers, 2021, 267: 118232. doi: 10.1016/j.carbpol.2021.118232.
[39] Wang J Y, Liu W, Chen Z Q, et al.Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomedicine & Pharmacotherapy, 2017, 90: 160-170.
[40] Chen X Q, Wu X F, Zhang K, et al.Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea[J]. Food Hydrocolloids, 2022, 129: 107667. doi: 10.1016/j.foodhyd.2022.107667.
[41] Li Q, Zhao T T, Shi J L, et al.Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis)[J]. Food Chemistry, 2022, 395: 133625. doi: 10.1016/j.foodchem.2022.133625.
[42] Li W, Wang K Q, Sun Y, et al.Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota[J]. Journal of Functional Foods, 2015, 13: 158-168.
[43] Chen H X, Qu Z S, Fu L L, et al.Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea[J]. Journal of Food Science, 2009, 74(6): 469-474.
[44] Hu T, Wu P, Zhan J F, et al.Structure variety and its potential effects on biological activity of tea polysaccharides[J]. Food Science and Human Wellness, 2022, 11(3): 587-597.
[45] Chen H X, Wang Z S, Qu Z S, et al.Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4): 629-635.
[46] Yang X H, Huang M J, Qin C Q, et al.Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea[J]. International Journal of Biological Macromolecules, 2017, 101: 768-775.
[47] Chen G J, Wang M J, Xie M H, et al.Evaluation of chemical property, cytotoxicity and antioxidant activity in vitro and in vivo of polysaccharides from Fuzhuan brick teas[J]. International Journal of Biological Macromolecules, 2018, 116: 120-127.
[48] Wang H S, Chen J R, Ren P F, et al.Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J]. Ultrasonics Sonochemistry, 2021, 70: 105355. doi: 10.1016/j.ultsonch.2020.105355.
[49] Zheng Q R, Li W F, Zhang H, et al.Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea (Camellia sinensis)[J]. Food Science & Nutrition, 2019, 8(1): 489-499.
[50] Xu P, Chen H, Wang Y Q, et al.Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice[J]. Journal of Food Science, 2012, 77(11): 246-252.
[51] Guo R, Zhang J A, Liu X, et al.Pectic polysaccharides from Biluochun tea: a comparative study in macromolecular characteristics, fine structures and radical scavenging activities in vitro[J]. International Journal of Biological Macromolecules, 2022, 195: 598-608.
[52] Tang Y Y, Sheng J F, He X M, et al.Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea[J]. Foods, 2021, 10(10): 2375. doi: 10.3390/foods10102375.
[53] Fan M H, Zhu J X, Qian Y L, et al.Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities[J]. Journal of Food Biochemistry, 2020, 44(8): e13277. doi: 10.1111/jfbc.13277.
[54] Liu L Q, Li H S, Nie S P, et al.Tea polysaccharide prevents colitis-associated carcinogenesis in mice by inhibiting the proliferation and invasion of tumor cells[J]. International Journal of Molecular Sciences, 2018, 19(2): 506. doi: 10.3390/ijms19020506.
[55] Wang Y C, Chen J, Zhang D Z, et al.Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells[J]. Carbohydrate Polymers, 2013, 98(1): 1186-1190.
[56] Wang H J, Shi S S, Bao B, et al.Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect[J]. Carbohydrate Polymers, 2015, 124: 98-108.
[57] Li S Q, Chen H X, Wang J, et al.Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice[J]. International Journal of Biological Macromolecules, 2015, 81: 967-974.
[58] Chung J O, Yoo S H, Lee Y E, et al.Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch[J]. Food & Function, 2019, 10(2): 746-753.
[59] Zhao Y N, Chen H, Li W T, et al.Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota[J]. International Journal of Biological Macromolecules, 2022, 209: 356-366.
[60] Kim J, Choi H, Choi D H, et al.Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia[J]. Scientific Reports, 2021, 11(1): 2232. doi: 10.1038/s41598-021-81989-9.
[61] Liu L Q, Nie S P, Shen M Y, et al.Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway[J]. Journal of Agricultural and Food Chemistry, 2018, 66(17): 4384-4393.
[62] Cheng L Z, Chen L, Yang Q Q, et al.Antitumor activity of Se-containing tea polysaccharides against sarcoma 180 and comparison with regular tea polysaccharides and Se-yeast[J]. International Journal of Biological Macromolecules, 2018, 120: 853-858.
[63] 王兆梅, 李琳, 郭祀远, 等. 活性多糖构效关系研究评述[J]. 现代化工, 2002(8): 18-21, 23.
Wang Z M, Li L, Guo S Y, et al.Review on structure-activity relationship of active polysaccharides[J]. Modern Chemical Industry, 2002(8): 18-21, 23.
[64] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学, 2021, 42(23): 355-363.
Yang Y J, Liu J Y, Tan Y, et al.Progress inunderstanding the structure-activity relationship and hypaglycemic mechanism of polysaccharides[J]. Food Science, 2021, 42(23): 355-363.
[65] Wang D Y, Zhao Y, Sun Y F, et al.Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice[J]. Food Chemistry, 2014, 143: 371-378.
[66] 倪德江, 陈玉琼, 宋春和, 等. 乌龙茶多糖对糖尿病大鼠肝肾抗氧化功能及组织形态的影响[J]. 茶叶科学, 2003, 23(1): 11-15.
Ni D J, Chen Y Q, Song C H, et al.Effect of oolong tea polysaccharide on hepatic-nephritic antioxidation and histomorphology in the diabetic rats[J]. Journal of Tea Science, 2003, 23(1): 11-15.
[67] 江和源. 茶叶降血糖活性及对糖尿病的功效与机理[J]. 中国茶叶, 2019, 41(2): 1-6.
Jiang H Y.Hypoglycemic activity of tea and its effect and mechanism on diabetes[J]. China Tea, 2019, 41(2): 1-6.
[68] Monobe M N M, Ema K, Kato F M K, et al. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract[J]. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1423-1427.
[69] Yuan C F, Li Z H, Peng F, et al.Combination of selenium-enriched green tea polysaccharides and Huo-ji polysaccharides synergistically enhances antioxidant and immune activity in mice[J]. Journal of the Science of Food and Agriculture, 2015, 95(15): 3211-3217.
[70] Chen X Q, Zhang Z F, Gao Z M, et al.Physicochemical properties and cell-based bioactivity of Pu’erh tea polysaccharide conjugates[J]. International Journal of Biological Macromolecules, 2017, 104: 1294-1301.
[71] Ho Do M, Seo Y S, Park H Y.Polysaccharides: bowel health and gut microbiota[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(7): 1212-1224.
[72] Chen G J, Wang M J, Zeng Z Q, et al.Fuzhuan brick tea polysaccharides serve as a promising candidate for remodeling the gut microbiota from colitis subjects in vitro: fermentation characteristic and anti-inflammatory activity[J]. Food Chemistry, 2022, 391: 133203. doi: 10.1016/j.foodchem.2022.133203.
[73] Li N, Zhou S Y, Yang X B, et al.Applications of natural polysaccharide-based pH-sensitive films in food packaging: current research and future trends[J]. Innovative Food Science & Emerging Technologies, 2022, 82(1): 103200. doi: 10.1016/j.ifset.2022.103200.
[74] Shahidi F, Hossain A.Preservation of aquatic food using edible films and coatings containing essential oils: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 66-105.
[75] Azeredo H M C, Waldron K W. Crosslinking in polysaccharide and protein films and coatings for food contact: a review[J]. Trends in Food Science & Technology, 2016, 52: 109-122.
[76] Shao P, Feng J R, Sun P L, et al.Recent advances in improving stability of food emulsion by plant polysaccharides[J]. Food Research International, 2020, 137: 109376. doi: 10.1016/j.foodres.2020.109376.
[77] Tang Q L, Huang G L.Improving method, properties and application of polysaccharide as emulsifier[J]. Food Chemistry, 2022, 376: 131937. doi: 10.1016/j.foodchem.2021.131937.
[78] Li S Q, Wang X M, Li W W, et al.Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein[J]. Carbohydrate Polymers, 2016, 146: 52-57.
[79] Fan M H, Zhang X, Zhao Y, et al.Mn(II)-mediated self-assembly of tea polysaccharide nanoparticles and their functional role in mice with type 2 diabetes[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30607-30617.
[80] Albuquerque P B S, De Oliveira W F, Dos Santos Silva P M, et al. Skincare application of medicinal plant polysaccharides: a review[J]. Carbohydrate Polymers, 2022, 277: 118824. doi: 10.1016/j.carbpol.2021.118824.
[81] 李焱, 林泳峰, 刘文美, 等. 食药同源植物多糖调控肠道稳态的研究进展[J]. 食品安全质量检测学报, 2023, 14(2): 25-33.
Li Y, Lin Y F, Liu W M, et al.Research progress on regulating intestinal steady-state of polysaccharides from food-medicine homologous plants[J]. Journal of Food Safety and Quality, 2023, 14(2): 25-33.
[82] Chen X Q, Han Y, Meng H, et al.Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins[J]. Industrial Crops and Products, 2019, 140: 111611. doi: 10.1016/j.indcrop.2019.111611.
[83] Chen X Q, Zhang Y T, Han Y, et al.Emulsifying properties of polysaccharide conjugates prepared from chin-brick tea[J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10165-10173.
[84] Wang C, Fu Y X, Cao Y, et al.Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: effect of dark tea polysaccharides[J]. Food Research International, 2023, 163: 112123. doi: 10.1016/j.foodres.2022.112123.
[85] Lin X R, Mu J J, Chen Z Z, et al.Stabilization and functionalization of selenium nanoparticles mediated by green tea and Pu-erh tea polysaccharides[J]. Industrial Crops and Products, 2023, 194: 116312. doi: 10.1016/j.indcrop.2023.116312.
[86] Wu S Y, Li N, Yang C, et al.Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes[J]. International Journal of Biological Macromolecules, 2018, 118: 808-815.