欢迎访问《茶叶科学》,今天是
研究报告

高温和干旱胁迫下茶树叶片内源激素含量变化及其相关基因的表达分析

  • 唐子贻 ,
  • 杜玥 ,
  • 杨宏斌 ,
  • 黎星辉 ,
  • 余有本 ,
  • 王伟东
展开
  • 1.西北农林科技大学园艺学院,陕西 杨凌 712100;
    2.南京农业大学园艺学院,江苏 南京 210095
唐子贻,女,硕士研究生,主要从事茶树栽培育种及分子生物学研究。

收稿日期: 2023-03-24

  修回日期: 2023-07-13

  网络出版日期: 2023-08-24

基金资助

陕西省重点研发计划项目(2022NY-154)、陕西省农业专项资金项目[NYKJ-2022-YL(XN)37]、国家茶叶产业技术体系(CARS-19)、西北农林科技大学科技推广重点项目(TGZX2022-2)

Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses

  • TANG Ziyi ,
  • DU Yue ,
  • YANG Hongbin ,
  • LI Xinghui ,
  • YU Youben ,
  • WANG Weidong
Expand
  • 1. College of Horticulture, Northwest A&F University, Yangling 712100, China;
    2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2023-03-24

  Revised date: 2023-07-13

  Online published: 2023-08-24

摘要

高温干旱极端环境严重影响茶树生长发育,以及茶叶产量和品质,激素作为植物响应逆境胁迫的重要信号因子,其在茶树响应高温和干旱胁迫过程中的分子机理少有报道。以龙井长叶为材料,对高温和干旱胁迫下茶树叶片中内源激素含量的变化及其相关基因的表达水平进行了系统分析。结果表明,高温和干旱胁迫下茶树叶片中生长素(IAA)、赤霉素(GA3)含量显著降低,玉米素核苷(ZR)含量略有升高,推测茶树通过减少促生类激素来延缓生长以适应胁迫影响;同时,大量IAA、GA3、ZR生物合成和信号响应相关的基因显著差异表达,为解释激素含量变化及信号转导提供了分子基础。脱落酸(ABA)和茉莉酸(JA)作为逆境响应激素其含量在高温和干旱胁迫下均显著增加,这可能依赖于ZEPNCEDSDR等ABA生物合成途径基因和LOXOPRACX等JA生物合成途径基因的上调表达;另外,许多PYR/PYLPP2C等ABA信号途径基因以及JAZMYC2等JA信号途径基因也显著差异表达,暗示了ABA和JA信号途径在茶树响应高温和干旱胁迫过程中的重要作用。研究结果为进一步探究茶树依赖内源激素的高温和干旱胁迫响应分子机理提供理论参考。

本文引用格式

唐子贻 , 杜玥 , 杨宏斌 , 黎星辉 , 余有本 , 王伟东 . 高温和干旱胁迫下茶树叶片内源激素含量变化及其相关基因的表达分析[J]. 茶叶科学, 2023 , 43(4) : 489 -500 . DOI: 10.13305/j.cnki.jts.2023.04.006

Abstract

Extreme environments, such as heat and drought, seriously affect the growth and development of tea plants and the quality of tea production. Hormones are important signaling factors, but the molecular mechanisms of hormones involved in the response of tea plants to heat and drought stresses are rarely reported. In this study, we systematically analyzed the changes in endogenous hormone contents and the expression levels of related genes in leaves of tea plants under heat and drought stresses. The results show that the contents of IAA and GA3 were significantly reduced and the contents of ZR were slightly increased in leaves of tea plants under heat and drought stresses, which were presumably used to delay the growth of tea plants to adapt to the environment stresses. Meanwhile, many genes related to biosynthesis and signal response of IAA, GA3 and ZR were significantly differentially expressed, which provided a molecular basis for explaining the hormone content changes and signal transduction. In addition, the contents of ABA and JA increased significantly under both heat and drought stresses, which may depend on the up-regulated expressions of ABA biosynthetic pathway genes such as ZEP, NCED, SDR and JA biosynthetic pathway genes such as LOX, OPR, ACX. Furthermore, many ABA signal responsive genes such as PYR/PYL, PP2C and JA signal responsive genes such as JAZ, MYC2 were also significantly differentially expressed, suggesting the important role of ABA and JA signaling pathways in the response of tea plants to heat and drought stresses. These results provided theoretical references for further exploring the molecular mechanisms of tea plants response to heat and drought stresses, which rely on endogenous hormones.

参考文献

[1] Zeng L T, Watanabe N H R, Yang Z Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.
[2] Jogawat A, Yadav B, Chhaya, et al. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review[J]. Physiologia Plantarum, 2021, 172(2): 1106-1132.
[3] Bittner A, Ciesla A, Gruden K, et al.Organelles and phytohormones: a network of interactions in plant stress responses[J]. Journal of Experimental Botany, 2022, 73(21): 7165-7181.
[4] Li H, Teng R M, Liu J X, et al.Identification and analysis of genes involved in auxin, abscisic acid, gibberellin, and brassinosteroid metabolisms under drought stress in tender shoots of tea plants[J]. DNA and Cell Biology, 2019, 38(11): 1292-1302.
[5] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5): 382-392.
Yue C, Zeng J M, Zhang Z F, et al.Research progress in the phytohormone of tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2012, 32(5): 382-392.
[6] 李梦菡, 吉艳艳, 张丽平, 等. 植物激素在茶树应对非生物逆境中的作用研究进展[J]. 中国茶叶, 2022, 44(10): 8-15.
Li M H, Ji Y Y, Zhang L P, et al.Research progress on the role of plant hormones in tea plant coping with abiotic stress[J]. China Tea, 2022, 44(10): 8-15.
[7] Gai Z S, Wang Y, Ding Y Q, et al.Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress[J]. Scientific Reports, 2020, 10(1): 12275. doi: 10.1038/s41598-020-69080-1.
[8] 周琳, 徐辉, 朱旭君, 等. 脱落酸对干旱胁迫下茶树生理特性的影响[J]. 茶叶科学, 2014, 34(5): 473-480.
Zhou L, Xu H, Zhu X J, et al.Effect of abscisic acid on physiological characteristics of tea plant under drought stress[J]. Journal of Tea Science, 2014, 34(5): 473-480.
[9] Liu S C, Jin J Q, Ma J Q, et al.Transcriptomic analysis of tea plant responding to drought stress and recovery[J]. Plos One, 2016, 11(1): e0147306. doi: 10.1371/journal.pone.0147306.
[10] 王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学, 2020, 59(8): 99-102.
Wang Y, Li Y, Wang S, et al.Changes of growth regulators of Camellia sinensis (L.) Kuntze var. niaowangensis Q. H. Chen under low temperature stress in Guizhou[J]. Hubei Agricultural Sciences, 2020, 59(8): 99-102.
[11] Shen J Z, Zou Z W, Xing H Q, et al.Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis[J]. International Journal of Molecular Sciences, 2020, 21(7): 2433. doi: 10.3390/ijms21072433.
[12] Li X, Ahammed G J, Zhang X N, et al.Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L[J]. Journal of Hazardous Materials, 2021, 403: 123922. doi: 10.1016/j.jhazmat.2020.123922.
[13] 曾光辉, 马青平, 王伟东, 等. 自然低温对茶树内源激素含量的影响[J]. 茶叶科学, 2016, 36(1): 85-91.
Zeng G H, Ma Q P, Wang W D.et al.Effect of natural low-temperature on endogenous hormones of Camellia sinensis (L.) Kuntze plant[J]. Journal of Tea Science, 2016, 36(1): 85-91.
[14] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. PNAS, 2018, 115(18): E4151-E4158.
[15] 徐媛. 干旱胁迫下花生转录组与小RNA测序及相关基因的表达分析[D]. 桂林: 广西师范大学, 2020.
Xu Y.Sequencing of transcriptome and small RNA and expression analysis of related genes in peanut under drought stress [D]. Guilin: Guangxi Normal University, 2020.
[16] Li Y, Wang Y P, Tan S T, et al.Root growth adaptation is mediated by PYLs ABA receptor-PP2A potein phosphatase complex[J]. Advanced Science, 2020, 7(3): 1901455. doi: 10.1002/advs.201901455.
[17] Shen Z, Zhang Y H, Zhang L, et al.Changes in the distribution of endogenous hormones in Phyllostachys edulis 'Pachyloen' during bamboo shooting[J]. Plos One, 2020, 15(12): e0241806. doi: 10.1371/journal.pone.0241806.
[18] Wang H Y, Cui K, He C Y, et al.Endogenous hormonal equilibrium linked to bamboo culm development[J]. Genetics and Molecular Research, 2015, 14(3): 11312-11323.
[19] 陈博雯, 覃子海, 张烨, 等. 干旱胁迫下澳洲茶树生理活性及内源激素动态变化研究[J]. 山东农业科学, 2019, 51(10): 55-59.
Chen B W, Qin Z H, Zhang Y, et al.Dynamic changes of physiological activities and endogenous hormones in Melaleuca alternifolia under drought stress[J]. Shandong Agricultural Sciences, 2019, 51(10): 55-59.
[20] 王得运, 刘培培, 陈云婷, 等. 干旱胁迫对栀子内源激素含量的影响[J]. 中国农业科技导报, 2021, 23(4): 58-63.
Wang D Y, Liu P P, Chen Y T, et al.Effect of drought stress on endogenous hormone content of Gardenia jasminoides Ellis[J]. Journal of Agricultural Science and Technology, 2021, 23(4): 58-63.
[21] 王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响[J]. 草业学报, 2016, 25(8): 81-90.
Wang R M, Xiong X Y.Effect of temperature stress on growth and metabolism in parennial ryegrass[J]. Acta Prataculturae Sinica, 2016, 25(8): 81-90.
[22] 朱琨, 李波, 邬婷婷. 高温胁迫对苜蓿愈伤组织内源激素含量的影响[J]. 黑龙江畜牧兽医, 2021(12): 102-106.
Zhu K, Li B, Wu T T.Effect of high temperature stress on endogenous hormone content in alfalfa callus[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(12): 102-106.
[23] Liu X Z, Huang B R.Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism[J]. Crop Science, 2002, 42(2): 466-472.
[24] Li S L, Li X N, Wei Z H, et al.ABA-mediated modulation of elevated CO2 on stomatal response to drought[J]. Current Opinion in Plant Biology, 2020, 56: 174-180.
[25] Islam M R, 符冠富, 奉保华, 等. “稻清”减轻水稻穗期高温伤害的原因分析[J]. 中国稻米, 2018, 24(3): 21-24.
Islam M R, Fu G F, Feng B H, et al.Physiological mechanisms involved in “Daoqing” alleviating the damage on rice under heat stress[J]. China Rice, 2018, 24(3): 21-24.
[26] Xu P, Zhang X Y, Su H, et al.Genome-wide analysis of PYL-PP2C-SnRK2s family in Camellia sinensis[J]. Bioengineered, 2020, 11(1): 103-115.
[27] Pei X X, Wang X Y, Fu G Y, et al.Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum[J]. International Journal of Biological Macromolecules, 2021, 182: 298-310.
[28] Jahan A, Komatsu K, Wakida-Sekiya M, et al.Archetypal roles of an abscisic acid receptor in drought and sugar responses in liverworts[J]. Plant Physiology, 2019, 179(1): 317-328.
[29] Nie X H, Zhao S Q, Hao Y Q, et al.Transcriptome analysis reveals key genes involved in the resistance to Cryphonectria parasitica during early disease development in Chinese chestnut[J]. BMC Plant Biology, 2023, 23(1): 79. doi: 10.1186/s12870-023-04072-7.
[30] Zhao W C, Huang H, Wang J J, et al.Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato[J]. Plant Journal, 2022, 113(3): 546-561.
[31] Wang Y C, Xu H F, Liu W J, et al.Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell Tissue and Organ Culture, 2019, 136(1): 75-84.
[32] Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665.
[33] Chico J M, Lechner E, Fernandez-Barbero G, et al.CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses[J]. PNAS, 2020, 117(11): 6205-6215.
[34] Jung C, Zhao P Z, Seo J S, et al.PLANT U-BOX PROTEIN10 regulates MYC2 stability in arabidopsis[J]. Plant Cell, 2015, 27(7): 2016-2031.
[35] Nakano M, Omae N, Tsuda K.Inter-organismal phytohormone networks in plant-microbe interactions[J]. Current Opinion in Plant Biology, 2022, 68: 102258. doi: 10.1016/j.pbi.2022.102258.
文章导航

/