[1] Krastanov A.Metabolomics-the state of art[J]. Biotechnology & Biotechnological Equipment, 2010, 24(1): 1537-1543.
赵维薇, 许文涛, 王龑, 等. 代谢组学研究技术及其应用[J]. 生物技术通报, 2011, 27(12): 57-64.
Zhao W W, Xu W T, Wang Y, et al.Techniques for metabolomics and its application[J]. Biotechnology Bulletin, 2011, 27(12):57-64.
[2] 陈勤操, 戴伟东, 蔺志远, 等. 代谢组学解析遮阴对茶叶主要品质成分的影响[J]. 中国农业科学, 2019, 52(6): 1066-1077.
Chen Q C, Dai W D, Lin Z Y, et al.Effects of shading on main quality components in tea (Camellia sinensis (L) O. Kuntze) leaves based on metabolomics analysis[J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[3] Kumar R, Bohra A, Pandey A K, et al.Metabolomics for plant improvement: status and prospects[J]. Frontiers in Plant Science, 2017, 8: 1302. doi: 10.3389/fpls.2017.01302.
[4] Sedio B E.Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification[J]. New Phytologist, 2017, 214(3): 952-958.
[5] Vasilev N, Boccard J, Lang G, et al.Structured plant metabolomics for the simultaneous exploration of multiple factors[J]. Scientific Reports, 2016, 6: 37390. doi: 10.1038/srep37390.
[6] Gachet M S, Schubert A, Calarco S, et al.Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom[J]. Scientific Reports, 2017, 7: 41177. doi:10.1038/srep41177.
[7] Chacko S M, Thambi P T, Kuttan R, et al.Beneficial effects of green tea: a literature review[J]. Chinese Medicine, 2010, 5(1): 13-21.
[8] Khan N, Mukhtar H.Tea polyphenols for health promotion[J]. Life Sciences, 2007, 81(7): 519-533.
[9] Han W Y, Huang J G, Li X, et al.Altitudinal effects on the quality of green tea in east China: a climate change perspective[J]. European Food Research and Technology, 2017, 243(2): 323-330.
[10] Ahmed S, Griffin T S, Kraner D, et al.Environmental factors variably impact tea secondary metabolites in the context of climate change[J]. Frontiers in Plant Science, 2019, 10: 939. doi:10.3389/fpls.2019.00939.
[11] Qin Q, Wang B H, Wang J Y, et al.A comprehensive strategy for studying protein-metabolite interactions by metabolomics and native mass spectrometry[J]. Talanta, 2019, 194: 63-72.
[12] Chaleckis R, Meister I, Zhang P, et al.Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics[J]. Current Opinion in Biotechnology, 2019, 55: 44-50.
[13] 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33-38.
Liu X Q, Luo J.Advances of technologies and research in plant metabolomics[J]. Science & Technology Review, 2015, 33(16): 33-38.
[14] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Tea biochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2003.
[15] 孙君, 朱留刚, 林志坤, 等. 茶树光合作用研究进展[J]. 福建农业学报, 2015, 30(12): 1231-1237.
Sun J, Zhu L G, Lin Z K.et al.Research progress on photosynthesis of tea plants[J]. Fujian Journal of Agricultural Sciences, 2015, 30(12): 1231-1237.
[16] 骆耀平. 茶树栽培学[M]. 4版. 北京: 中国农业出版社, 2008.
Luo Y P.Tea cultivation[M]. 4th ed. Beijing: China Agriculture Press, 2008.
[17] Wang P J, Chen S R, Gu M Y, et al.Exploration of the effects of different blue LED light intensities on flavonoid and lipid metabolism in tea plants via transcriptomics and metabolomics[J]. International Journal of Molecular Sciences, 2020, 21(13): 4606. doi: 10.3390/ijms21134606.
[18] Wang Z H, Zhang G Q, Zhang Z W, et al.Target metabolome and transcriptome analysis reveal molecular mechanism associated with changes of tea quality at different development stages[J]. Molecular Biotechnology, 2023, 65(1): 52-60.
[19] Gong A D, Lian S B, Wu N N, et al.Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons[J]. BMC Plant Biology, 2020, 20(1): 294. doi: 10.1186/s12870-020-02443-y.
[20] Mozumder N, Hwang K H, Lee M S, et al.Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants[J]. Food Research International, 2021, 140: 109978. doi: 10.1016/j.foodres.2020.109978.
[21] Chen Y Y, Zhou B, Li J L, et al.Effects of long-term non-pruning on main quality constituents in ‘Dancong’ tea (Camellia sinensis) leaves based on proteomics and metabolomics analysis[J]. Foods, 2021, 10(11): 2649. doi:10.3390/foods10112649.
[22] Wei K L, Liu M Y, Shi Y F, et al. Metabolomics reveal that the high application of phosphorusand potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid[J]. Agronomy-basel, 2022, 12(5): 1086. dio: 10.3390/agronomy12051086.
[23] Zhang Q F, Li C L, Jiao Z X, et al. Integration of metabolomics and transcriptomics reveal the mechanism underlying accumulation of flavonols in albino tea leaves[J]. Molecules, 2022, 27(15): 5792. dio: 10.3390/molecules27185792.
[24] Gomez-Casanovas N, Blanc-Betes E, Gonzalez-Meler M A, et al. Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive opuntia ficus-indica[J]. Plant Physiology, 2007, 145(1): 49-61.
[25] Li X, Zhang G Q, Sun B, et al.Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere[J]. Scientific Reports, 2013, 3: 3433. doi: 10.1038/srep03433.
[26] Li Z X, Yang W J, Ahammed G J, et al.Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position[J]. Plant Physiology and Biochemistry, 2016, 106: 327-335.
[27] 谢思艺. 基于简化基因组测序的福建省茶树起源演化与传播轨迹分析[D]. 福州: 福建农林大学, 2022.
Xie S Y.Spread trajectories of Camellia sinensis in Fujian province based on simplified genome sequencing[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022
[28] Li X, Zhang L, Ahammed G J, et al.Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L[J]. Scientific Reports, 2017, 7(1): 7937. doi: 10.1038/s41598-017-08465-1.
[29] 冉伟. 基于代谢组学的蚜虫为害降低茶树对茶尺蠖的抗性机制研究[D]. 北京: 中国农业科学院, 2018.
Ran W.Metabolomics mechanisms underlying inhibition of infestatiion by Toxoptera aurantii on defense response of tea plants to Ectropis obliqua[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
[30] 石元值, 方丽, 吕闰强. 树冠微域环境对茶树碳氮代谢的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1250-1261.
Shi Y Z, Fang L, Lü R Q.The effects of the canopy microenvironment on the nitrogen and carbon metabolism of tea plants[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1250-1261.
[31] Ruan J, Haerdter R, Gerendás J.Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea[Camellia sinensis (L.) O. Kuntze] plants[J]. Plant Biology, 2010, 12(5): 724-734.
[32] Yamashita H, Tanaka Y, Umetsu K, et al.Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation[J]. Frontiers in Plant Science, 2020, 11: 556476. doi: 10.3389/fpls.2020.556476.
[33] Li Y, Jeyaraj A, Yu H, et al.Metabolic regulation profiling of carbon and nitrogen in tea plants[Camellia sinensis (L.) O. Kuntze] in response to shading[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 961-974.
[34] Shao C Y, Jiao H Z, Chen J H, et al.Carbon and nitrogen metabolism are jointly regulated during shading in roots and leaves of Camellia sinensis[J]. Frontiers in Plant Science, 2022, 13: 894840. doi: 10.3389/fpls.2022.894840.
[35] 陈建姣, 吕智栋, 刘婕, 等. 遮阴及复光下茶树新梢主要碳氮代谢物动态变化[J]. 南方农业学报, 2022, 53(2): 314-323.
Chen J J, Lu Z D, Liu J, et al.Dynamic changes of main carbon and nitrogen metabolites in tea plants (Camellia sinensis L.) shoots under shading and re-lighting[J]. Journal of Southern Agriculture, 2022, 53(2): 314-323.
[36] 曾润康. 不同光质补光对茶树生理及生化的影响[D]. 广东: 华南农业大学, 2019.
Zeng R K.Effect of different light qualities on physiological and biochemical of tea plant[D]. Guangdong: South China Agricultural University, 2019.
[37] Zoratti L, Karppinen K, Escobar A L, et al.Light-controlled flavonoid biosynthesis in fruits[J]. Frontiers in Plant Science, 2014, 5: 534. doi: 10.3389/fpls.2014.00534.
[38] Dong F, Hu J H, Shi Y Z, et al.Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2019, 138: 48-57.
[39] 刘健伟. 基于组学技术研究氮素对于茶树碳氮代谢及主要品质成分生物合成的影响[D]. 北京: 中国农业科学院, 2016.
Liu J W.Omics-based study on the metabolism of C/N and biosynthesis of main quality related components in tea plants affected by nitrogen[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[40] Wang Y, Wang Y M, Lu Y T, et al.Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2021, 167(6): 561-566.
[41] Zhang Q F, Tang D D, Liu M Y, et al.Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism[J]. Scientia Horticulturae, 2018, 231: 272-281.
[42] Liu J W, Liu M Y, Fang H H, et al.Accumulation of amino acids and flavonoids in young tea shoots is highly correlated with carbon and nitrogen metabolism in roots and mature leaves[J]. Frontiersin Plant Science, 2021, 12: 756433. doi: 10.3389/fpls.2021.756433.
[43] Jiang C K, Ma J Q, Apostolides Z, et al.Metabolomics for a millenniums-old crop: tea plant (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(23): 6445-6457.
[44] Hildebrandt T M, Nesi A N, Araujo W L, et al.Amino acid catabolism in plants[J]. Molecular Plant, 2015, 8(11): 1563-1579.
[45] Deng W W, Ogita S, Ashihara H.Distribution and biosynthesis of theanine in Theaceae plants[J]. Plant Physiologyand Biochemistry, 2010, 48(1): 70-72.
[46] 方骏婷. 祁门红茶加工过程中主要化学成分分析[D]. 合肥: 安徽农业大学, 2016.
Fang J T.Analysis on metabolic chemical composition of Keemun black tea in processing[D]. Hefei: Anhui Agricultural University, 2016.
[47] Tan J F, Dai W D, Lu M L, et al.Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Research International, 2016, 79: 106-113.
[48] Li C F, Ma J Q, Huang D J, et al.Comprehensive dissection of metabolic changes in albino and green tea cultivars[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 2040-2048.
[49] Zhu M Z, Li N, Zhao M, et al.Metabolomic profiling delineate taste qualities of tea leaf pubescence[J]. Food Research International, 2017, 94: 36-44.
[50] 彭佳堃, 戴伟东, 颜涌泉, 等. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784.
Peng J K, Dai W D, Yan Y Q, et al.Study on the chemical constituents of Yongchun Foshou Oolong tea based on metabolomics[J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[51] 徐欢欢, 尹丹, 刘提提, 等. 不同红茶中主要氨基酸含量及其对小鼠自主活动的影响研究[J]. 食品工业科技, 2017, 38(17): 300-304.
Xu H H, Yin D, Liu T T, et al.Comparison of the main amino acids content in different black tea and its effect on locomotor activity of mice[J]. Science and Technology of Food Industry, 2017, 38(17): 300-304.
[52] 高健健, 陈丹, 彭佳堃, 等. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学, 2022, 42(5): 623-637.
Gao J J, Chen D, Peng J K, et al.Comparison on chemical components of Yunnan and Fuding white tea based on metabolomics approach[J]. Journal of Tea Science, 2022, 42(5): 623-637.
[53] Liu J W, Zhang Q F, Liu M Y, et al.Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season[J]. Journal of Agricultural and Food Chemistry, 2016, 64(16): 3302-3309.
[54] Mozumder N H M R, Lee Y R, Hwang K H, et al. Characterization of tea leaf metabolites dependent on tea (Camellia sinensis) plant age through 1H NMR-based metabolomics[J]. Applied Biological Chemistry, 2020, 63(1): 10. dio: 10.1186/s13765-020-0492-7.
[55] Ji H G, Lee Y R, Lee M S, et al.Diverse metabolite variations in tea (Camellia sinensis L.) leaves grown under various shade conditions revisited: ametabolomics study[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1889-1897.
[56] Wu T, Zou R, Pu D, et al.Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut[J]. BMC Plant Biology, 2021, 21(1): 55. doi: 10.1186/s12870-021-02841-w.
[57] Duan Y, Shang X W, Liu G D, et al.The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis[J]. BMC Plant Biology, 2021, 21(1): 482. doi: 10.1186/s12870-021-03258-1.
[58] Pech-Ku R, Munoz-Sanchez J A, Monforte-Gonzalez M, et al. Caffeine extraction, enzymatic activity and gene expression of caffeine synthase from plant cell suspensions[J]. Journal of Visualized Experiments, 2018(140): e58166. doi: 10.3791/58166.
[59] 马圣洲, 赵飞, 胡莹, 等. 江苏丘陵地区主栽茶树品种的红茶适制性研究[J]. 中国农学通报, 2022, 38(26): 32-38.
Ma S Z, Zhao F, Hu Y, et al.Tea cultivars from the hilly areas of Jiangsu province: suitability for black tea processing[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 32-38.
[60] 徐玉婕, 戴晓晶, 吴纪忠, 等. 白化和黄化茶树品种绿茶游离氨基酸、儿茶素类及咖啡碱差异分析[J/OL]. 热带亚热带植物学报, 2022: 1-12[2023-03-28]. http://kns.cnki.net/kcms/detail/44.1374.Q.20221006.1537.008.html.
Xu Y J, Dai X J, Wu J Z, et al. Differences of free amino acids, catechins and caffeine between albino and etiolated tea varieties[J/OL]. Journal of Tropical and Subtropical Botany, 2022: 1-12[2023-03-28]. http://kns.cnki.net/kcms/detail/44.1374.Q.20221006.1537.008.html.
[61] 尹娟, 王镇, 段兆翔, 等. ‘白叶1号’茶树鲜叶加工高γ-氨基丁酸、低咖啡碱绿茶的研究[J]. 茶业通报, 2022, 44(3): 118-122.
Yin J, Wang Z, Duan Z X, et al.Study on the processing of high gamma-aminobutyric acid and low caffeine green tea from fresh leaves of ‘Baiye 1’[J]. Journal of Tea Business, 2022, 44(3): 118-122.
[62] 檀学敏, 丁鑫, 周建得, 等. 遮阴对7个茶树品种的抹茶适制性影响研究[J]. 中国野生植物资源, 2021, 40(7): 28-33.
Tan X M, Ding X, Zhou J D, et al.Study on the influence of shading on the suitability of seven tea varieties for making matcha[J]. Chinese Wild Plant Resources, 2021, 40(7): 28-33.
[63] 闫振, 黄健垚, 高路, 等. 茶树体内咖啡碱生物代谢研究进展[J]. 中国茶叶, 2020, 42(7): 1-7.
Yan Z, Huan J Y, Gao L, et al.Research progress of caffeine biological metabolism in tea plant[J]. China Tea, 2020, 42(7): 1-7.
[64] Wang W, Zhu B Y, Wang P, et al.Enantiomeric trimethylallantoin monomers, dimers, and trimethyltriuret: evidence for an alternative catabolic pathway of caffeine in tea plant[J]. Organic Letters, 2019, 21(13): 5147-5151.
[65] Deng C, Ku X P, Cheng L L, et al.Metabolite and transcriptome profiling on xanthine alkaloids-fed tea plant (Camellia sinensis) shoot tips and roots reveal the complex metabolic network for caffeine biosynthesis and degradation[J]. Frontiers in Plant Science, 2020, 11: 551288. doi: 10.3389/fpls.2020.551288.
[66] 夏丽飞, 陈林波, 梁名志, 等. 特异茶树资源生物碱测定及相关基因表达分析[J]. 西南农业学报, 2013, 26(3): 947-949.
Xia L F, Chen L B, Liang M Z, et al.Determination of alkaloid and analysis of gene expression in peculiar tea plant[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 947-949.
[67] Li N N, Yang Y P, Ye J H, et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262.
[68] Li N N, Lu J L, Li Q S, et al.Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar ‘Xiaoxueya’ reveals an albino phenotype and metabolite formation[J]. Frontiers in Plant Science, 2019, 10: 1543. doi: 10.3389/fpls.2019.01543.
[69] Li P H, Ye Z L, Fu J M, et al.CsMYB184 regulates caffeine biosynthesis in tea plants[J]. Plant Biotechnology Journal, 2022, 20(6): 1012-1014.
[70] Rio D D, Rodriguez-Mateos A, Spencer J, et al.Dietary (Poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases[J]. Antioxidants & Redox Signaling, 2013, 18(14): 1818-1892.
[71] 陈思肜. 红蓝光对茶树生长及其代谢产物的影响[D]. 福州: 福建农林大学, 2020.
Chen S T.Effects of red and blue light on the growth and metabolites of tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[72] Li X, Zhang L, Ahammed G J, et al.Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.)[J]. Environmental and Experimental Botany, 2019, 161: 367-374.
[73] Jiang X L, Liu Y J, Li W W, et al.Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant[Camellia sinensis][J]. Plos One, 2013, 8(4): e62315. doi: 10.1371/journal.pone.0062315.
[74] 郝亚利. 基于代谢谱分析的不同光质处理对茶鲜叶品质形成的影响研究[D]. 合肥: 安徽农业大学, 2010.
Hao L Y.Metabolic profiling reveals the effects of different light qualities on the quality formation of fresh tea (Camellia sinensis) leaves[D]. Hefei: Anhui Agricultural University, 2010.
[75] Lee L S, Choi J H, Son N, et al.Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea[J]. Journal of Agricultural and Food Chemistry, 2013, 61(2): 332-338.
[76] 缪有成, 谭吉慧, 刘伟, 等. 摇青、发酵工艺对汝城白毛茶加工夏季红茶品质的影响[J]. 食品研究与开发, 2022, 43(21): 31-39.
Miu Y C, Tan J H, Liu W, et al.Effects of shaking and fermentation on the quality of summer black tea of Rucheng Baimaocha[J]. Food Research and Development, 2022, 43(21): 31-39.
[77] 宁井铭, 方骏婷, 朱小元, 等. 基于代谢谱分析的祁门红茶加工过程中儿茶素及芳香类物质变化[J]. 食品工业科技, 2016, 37(9): 127-133.
Ning J M, Fang J T, Zhu X Y, et al.Analysis of catechins and aromatic of Keemun black tea during processing based on metabolic spectrum technology[J]. Science and Technology of Food Industry, 2016, 37(9): 127-133.
[78] 秦俊哲, 刘凯利, 黄亚亚, 等. 茯砖茶中咖啡碱与EGCG的HPLC检测分析[J]. 陕西科技大学学报(自然科学版), 2017, 35(2): 110-113.
Qin J Z, Liu K L, Huang Y Y, et al.Analysis of caffeine and EGCG in the Fu brick tea by HPLC[J]. Journal of Shaanxi University of Science & Technology, 2017, 35(2): 110-113.
[79] Liao J R, Shen Q, Li R Y, et al.GABA shunt contribution to flavonoid biosynthesis and metabolism in tea plants (Camellia sinensis )[J]. Plant Physiology and Biochemistry, 2021, 166: 849-856.
[80] Wei K L, Liu M Y, Shi Y F, et al.Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid[J]. Agronomy-Basel, 2022, 12(5): 1086. doi: 0.3390/agronomy12051086.
[81] 李春芳. 茶树类黄酮等次生代谢产物的合成及基因的表达分析[D]. 北京: 中国农业科学院, 2016.
Li C F.Biosynthesis of secondary metabolites such as flavonoids and the expression of their genes in Camellia sinensis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[82] Zhang W J, Liu C, Yang R J, et al.Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC[J]. Journal of Zhejiang University-Science B, 2019, 20(7): 563-575.
[83] Wang J, Li X H, Wu Y, et al.HS-SPME/GC-MS reveals the season effects on volatile compounds of green tea in high-latitude region[J]. Foods, 2022, 11(19): 3016. doi:10.3390/foods11193016.
[84] Ma C Y, Li J X, Chen W, et al.Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics[J]. Food Research International, 2018, 108: 413-422.
[85] 黄琳洁, 徐凯, 周承哲, 等. 不同海拔政和白茶品质差异分析[J/OL].食品科学, 2022: 1-14[2023-03-28]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221207.1548.012.html.
Huang L J, Xu K, Zhou C Z, et al. Quality difference analysis of Zhenghe white tea at different altitudes[J/OL]. Food Science, 2022: 1-14[2023-03-28]. http://kns.cnki. net/kcms/detail/11.2206.TS.20221207.1548.012.html.
[86] Qu F F, Li X H, Wang P Q, et al.Effect of thermal process on the key aroma components of green tea with chestnut-like aroma[J]. Journal of the Science of Food and Agriculture, 2023, 103(2): 657-665.
[87] Li Y C, He C, Yu X L, et al.Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering[J]. Lwt-Food Science and Technology, 2022, 154: 112597. doi: 10.1016/j.lwt.2021.112597.
[88] 方仕茂, 张拓, 杨婷, 等. 基于HPLC-FLD靶向分析古茶树游离氨基酸积累特征[J]. 江苏农业学报, 2022, 38(4): 1070-1077.
Fang S M, Zhang T, Yang T, et al.Targeted analysis of free amino acid accumulation characteristics of ancient tea trees based on HPLC-FLD[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(4): 1070-1077.
[89] 高超, 仇杰, 查仁明, 等. 贵州亮岩镇古茶树林地土壤养分含量分析[J]. 西南林业大学学报(自然科学), 2023, 43(2): 80-89.
Gao C, Chou J, Cha R M, et al.Analysis of soil nutrient status of ancient tea plantations in Liangyan of Guizhou province[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(2): 80-89.
[90] 何环珠, 林文雄, 闵庆文, 等. 闽南古茶树资源价值与保护策略探讨[J]. 生态与农村环境学报, 2022, 38(12): 1508-1513.
He H Z, Lin W X, Min Q W, et al.Discussion on the conservation and utilization of ancient tea tree resources in southern Fujian[J]. Journal of Ecology and Rural Environment, 2022, 38(12): 1508-1513.
[91] 梁涤, 李有贵, 高景然, 等. 基于木质部解剖特征的中华木兰与3种古茶树进化研究[J/OL]. 西南林业大学学报(自然科学), 2022: 1-9[2023-03-28]. http://kns.cnki.net/ kcms/detail/53.1218.s.20221226.0940.002.html.
Liang D, Li Y G, Gao J R, et al. Anatomic structure and evolution of secondary xylem of Magnolia miocenica and three ancient tea trees[J/OL]. Journal of Southwest Forestry University (Natural Sciences), 2022: 1-9[2023-03-28]. http://kns.cnki.net/kcms/detail/53.1218.s.20221226.0940.002.html.
[92] 王玮, 刘娜, 徐亚文, 等. 澜沧江中下游流域古茶树资源儿茶素含量的多样性分析[J/OL]. 分子植物育种, 2022: 1-17[2023-03-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20220720.1902.009.html.
Wang W, Liu N, Xu Y W, et al. Diversity analysis of catechin content in ancient tea tree resources in the middle and lower reaches of Lancang river[J/OL]. Molecular Plant Breeding, 2022: 1-17[2023-03-28]. http://kns.cnki.net/ kcms/detail/46.1068.S.20220720.1902.009.html.