欢迎访问《茶叶科学》,今天是
研究报告

基于图像处理技术的茶树新梢识别和叶面积计算的探索研究

  • 吕丹瑜 ,
  • 金子晶 ,
  • 陆璐 ,
  • 何卫中 ,
  • 疏再发 ,
  • 邵静娜 ,
  • 叶俭慧 ,
  • 梁月荣
展开
  • 1.浙江大学茶叶研究所,浙江 杭州 310058;
    2.浙江省农业技术推广中心,浙江 杭州 310000;
    3.丽水市农林科学研究院,浙江 丽水 323000
吕丹瑜,女,主要从事茶叶生产数字化品控技术方面研究,3190101348@zju.edu.cn。

收稿日期: 2023-05-29

  修回日期: 2023-08-23

  网络出版日期: 2023-11-06

基金资助

浙江省农业重大技术协同项目(2020XTTGCY04)、浙江省农业(茶树)新品种选育重大科技专项(2021C02067-5-1)

Exploratory Study on the Image Processing Technology-based Tea Shoot Identification and Leaf Area Calculation

  • LÜ Danyu ,
  • JIN Zijing ,
  • LU Lu ,
  • HE Weizhong ,
  • SHU Zaifa ,
  • SHAO Jingna ,
  • YE Jianhui ,
  • LIANG Yuerong
Expand
  • 1. Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
    2. Zhejiang Agricultural Technical Extension Center, Hangzhou 310000, China;
    3. Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China

Received date: 2023-05-29

  Revised date: 2023-08-23

  Online published: 2023-11-06

摘要

基于田间采集的大量茶树春梢生育图片,借助计算机视觉技术,利用目标检测算法YOLOv5构建茶树新梢不同生育阶段的识别模型,测试结果表明该模型具有较高的检测精度。进一步探究了Image-J软件处理以及基于Gray值、RGB值、HSV值的阈值切割图像处理方法在茶叶面积处理方面的应用,比较了不同方法的准确度和运行效率。结果表明,基于HSV阈值切割法的茶树叶片面积算法准确率在94%以上,表现优于RGB阈值切割法。研究结果为开发茶树新梢生育进度智能识别模型和叶片性状信息提取算法提供了技术支撑,为采茶机械的茶芽自动识别模块的研发提供了理论基础。

本文引用格式

吕丹瑜 , 金子晶 , 陆璐 , 何卫中 , 疏再发 , 邵静娜 , 叶俭慧 , 梁月荣 . 基于图像处理技术的茶树新梢识别和叶面积计算的探索研究[J]. 茶叶科学, 2023 , 43(5) : 691 -702 . DOI: 10.13305/j.cnki.jts.2023.05.007

Abstract

In this study, based on the picture collection of tea shoot growth in the field, we used deep learning target detection algorithm YOLOv5 to construct a model for identifying different growth stages of tea shoots, and the testing results indicate that the model had high accuracy. Furthermore, the Image-J software and the image processing methods of threshold cutting based on Gray, RGB and HSV values were applied to process tea leaf area, and the accuracy and efficiency of different methods were compared. The results show that the accuracy of HSV-based algorithm system of cutting tea leaves and automatically calculating tea leaf area was over 94%, which had better performance than RGB-based algorithm system. The research results provide technical support for the intelligent recognition model of tea growth state and information extraction algorithm of leaf traits, and also build a theoretical basis for the development of tea bud automatic recognition module of tea plucking machinery.

参考文献

[1] 唐小林, 王家鹏, 范起业. 我国茶业装备数字化现状及路径分析[J]. 中国茶叶加工, 2022, 169(3): 69-72.
Tang X L, Wang J P, Fan Q Y.Current situation and path analysis of digitalization of the tea industry equipment in China[J]. China Tea Processing, 2022, 169(3): 69-72.
[2] 金晶. 浙江省茶产业数字化改革进程与展望[J]. 中国茶叶加工, 2022, 169(3): 6-10, 33.
Jin J.Progress and prospect of the tea industry digital reform in Zhejiang[J]. China Tea Processing, 2022, 169(3): 6-10, 33.
[3] 许云召. 计算机图像处理技术在茶叶感官品质检测中的应用研究[J]. 福建茶叶, 2022, 44(8): 13-15.
Xu Y Z.Research on the application of computer image processing technology in sensory quality detection of tea[J]. Tea in Fujian, 2022, 44(8): 13-15.
[4] 陈晶, 朱启兵, 黄敏, 等. 基于机器视觉的茶小绿叶蝉识别方法研究[J]. 激光与光电子学进展, 2018, 55(1): 348-355.
Chen J, Zhu Q B, Huang M, et al.Recognition of Empoasca flavescens based on machine vision[J]. Laser & Optoelectronics Progress, 2018, 55(1): 348-355.
[5] 封洪强, 姚青. 农业害虫自动识别与监测技术[J]. 植物保护, 2018, 44(5): 127-133.
Feng H Q, Yao Q.Automatic identification and monitoring technologies of agricultural pest insects[J]. Plant Protection, 2018, 44(5): 127-133.
[6] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87.
Huang F, Liu F, Wang Y, et al.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87.
[7] 李素朵. 计算机视觉技术在茶叶等级检测中的应用研究[J]. 农机化研究, 2019, 41(5): 219-222.
Li S D.Application of computer vision in tea grade testing[J]. Journal of Agricultural Mechanization Research, 2019, 41(5): 219-222.
[8] 刘鹏, 吴瑞梅, 杨普香, 等. 基于计算机视觉技术的茶叶品质随机森林感官评价方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 193-198.
Liu P, Wu R M, Yang P X, et al.Study of sensory quality evaluation of tea using computer vision technology and forest random method[J]. Spectroscopy And Spectral Analysis, 2019, 39(1): 193-198.
[9] Redmon J, Divvala S, Girshick R, et al.You only look once: unified, real-time object detection[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[10] Lei F, Tang F, Li S.Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2022, 10(3): 310. doi: 10.3390/jmse10030310.
[11] 毋立芳, 汪敏贵, 付亨, 等. 深度目标检测与图像分类相结合的棉花发育期自动识别方法[J]. 中国科技论文, 2018, 13(20): 2309-2316.
Wu L F, Wang M G, Fu H, et al.Automatic recognition of cotton growth by combining deep learning based object recognition and image classification[J]. China Sciencepaper, 2018, 13(20): 2309-2316.
[12] 徐佳鹏, 张朝晖, 李智, 等. 基于YOLO模型的小麦外观分类算法研究[J]. 自动化仪表, 2023, 44(3): 83-87.
Xu J P, Zhang Z H, Li Z, et al.Research on wheat appearance classification algorithm based on YOLO model[J]. Process Automation Instrumentation, 2023, 44(3): 83-87.
[13] 尹川, 苏议辉, 潘勉, 等. 基于改进YOLOv5s的名优绿茶品质检测算法[J]. 农业工程学报, 2023, 39(8): 179-187.
Yin C, Su Y H, Pan M, et al.Detection of the quality of famous green tea based on improved YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 179-187.
[14] 王根, 江晓明, 黄峰, 等. 基于改进YOLOv3网络模型的茶草位置检测算法[J]. 中国农机化学报, 2023, 44(3): 199-207.
Wang G, Jiang X M, Huang F, et al.An algorithm for localizing tea bushes and green weeds based on improved YOLOv3 network model[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 199-207.
[15] 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 211-216.
Sun X X, Mou S M, Xu Y Y, et al.Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 211-216.
文章导航

/