欢迎访问《茶叶科学》,今天是
研究报告

基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构

  • 陈世春 ,
  • 江宏燕 ,
  • 廖姝然 ,
  • 陈亭旭 ,
  • 王晓庆
展开
  • 重庆市农业科学院茶叶研究所,重庆 402160
陈世春,女,副研究员,主要从事茶树害虫分子生物学及防控技术研究。

收稿日期: 2023-09-25

  修回日期: 2023-11-22

  网络出版日期: 2024-01-08

基金资助

国家重点研发计划(2022YFD1601401)、国家茶叶产业技术体系(CARS-19)、重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0520)

Analysis of Genetic Diversity and Genetic Structure in Geographic Populations of Stephanitis chinensis from China Based on Mitochondrial DNA COI Sequence

  • CHEN Shichun ,
  • JIANG Hongyan ,
  • LIAO Shuran ,
  • CHEN Tingxu ,
  • WANG Xiaoqing
Expand
  • Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing 402160, China

Received date: 2023-09-25

  Revised date: 2023-11-22

  Online published: 2024-01-08

摘要

茶网蝽(Stephanitis chinensis)是我国西南茶区的重要害虫,近年有入侵成灾事件发生。为解析茶网蝽的生态适应机制和成灾规律,测定了茶网蝽12个种群共240头成虫COI基因序列,利用DnaSP 6.12.03、Arlequin 3.5.2.2、MEGA 7.0.26等软件进行了遗传分化程度、基因流(Nm)以及分子变异情况的分析。结果显示,茶网蝽12个地理种群的240条COI基因序列共包含75个变异位点和38个单倍型,其中仅Hap13是共享单倍型。茶网蝽总群体的单倍型多样性指数(Hd)为0.827 79,地理种群的Hd在0.00~0.85,总群体的遗传分化固定系数(FST)为0.864 26,Nm为0.039 87,表明我国茶网蝽群体遗传分化程度较高,基因交流较小。重庆城口、重庆巫溪、湖北恩施、湖北十堰、陕西汉中等5个种群相互之间遗传分化程度较低,基因交流频繁(FST<0.06,Nm>4.50),其他种群对之间分化程度较高,基因交流较少(FST>0.25,Nm<1.00)。分子变异分析(AMOVA)支持遗传分化主要来自于不同地理种群之间(86.43%)。Tajima’s D和Fu’s Fs中性检验支持重庆巴南、湖北恩施种群以及大巴山脉周边群体发生过种群扩张事件。本研究分析推测我国茶网蝽兼具入侵种群扩张成灾和原始种群扩张成灾的风险,建议有茶网蝽发生的茶区和大巴山脉周边茶园加强对该害虫的监测工作。

本文引用格式

陈世春 , 江宏燕 , 廖姝然 , 陈亭旭 , 王晓庆 . 基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构[J]. 茶叶科学, 2023 , 43(6) : 795 -805 . DOI: 10.13305/j.cnki.jts.2023.06.008

Abstract

The tea lace bug, Stephanitis chinensis, is an important pest of the southwest tea region in China, which has spread and caused disasters in recent years. To analyze the ecological adaptation mechanism and disaster law of S. chinensis, COI sequences of 240 adults from 12 populations of this pest were sequenced. The genetic differentiation, gene flow level and molecular variance were analyzed by DnaSP 6.12.03, Arlequin 3.5.2.2 and MEGA 7.0.26, respectively. There were 75 mutation sites and 38 haplotypes in the COI sequences of 12 geographic populations, and only Hap13 was a shared haplotype. Haplotype diversity index (Hd) of the total population was 0.827 79, Hd values between geographical populations ranged from 0.00 to 0.85. Fixed coefficient (FST) and gene flow (Nm) value of total population were 0.864 26 and 0.039 87, respectively. The results indicate that there are a high degree of genetic differentiation and a small degree of gene exchange of the total population in China. Population pairs of 5 populations (CQCK, CQWX, HBES, HBSY and SXHZ) had low genetic differentiation and frequent gene exchange (FST<0.06, Nm>4.50), while other population pairs had high genetic differentiation and less gene exchange (FST>0.25, Nm<1.00). Molecular variance analysis (AMOVA) supports that the genetic differentiation was mainly among populations (86.43%). Tajima's D and Fu's Fs neutrality test support that population expansion events occurred in the CQBN, HBES populations and the whole population around the Daba Mountains. In this study, the risk of both invasion expansion and original population expansion of S. chinensis in China was analyzed and speculated. It suggests that the field monitoring of the tea lace bug should be strengthened in tea plantations.

参考文献

[1] 陈宗懋, 杨亚军. 中国茶经[M]. 上海: 上海文化出版社, 1993.
Chen Z M, Yang Y J.Chinese tea classics [M]. Shanghai: Shanghai Culture Publishing House, 1993.
[2] 唐美君, 郭华伟, 殷坤山, 等. 茶网蝽卵的形态及其分布[J]. 中国茶叶, 2016, 38(4): 22-23.
Tang M J, Guo H W, Yin K S, et al.Egg morphology and distribution of Stephanitis chinensis[J]. China Tea, 2016, 38(4): 22-23.
[3] 何远武, 崔吉明, 何远军, 等. 茶网蝽田间系统调查初报[J]. 湖北农业科学, 2018, 57(22): 57-59.
He Y W, Cui J M, He Y J, et al.Preliminary report on the field system investigation of the tea bug[J]. Hubei Agricultural Sciences, 2018, 57(22): 57-59.
[4] 彭萍, 王晓庆, 李品武. 茶树病虫害测报与防治技术[M]. 北京: 中国农业出版社, 2013.
Peng P, Wang X Q, Li P W.Forecast and control techniques of tea diseases and pests [M]. Beijing: China Agriculture Press, 2013.
[5] 吴平昌, 李尤学. 陕南茶区茶网蝽发生现状和防控研究[J]. 陕西农业科学, 2014, 60(3): 73-76.
Wu P C, Li Y X.Study on occurrence and control of tea lace bug (Stephanitis chinensis Drake) in southern Shaanxi[J]. Shaanxi Journal of Agricultural Sciences, 2014, 60(3): 73-76.
[6] 袁久胜. 茶网蝽的危害特点与绿色防控对策[J]. 中国农业信息, 2017(21): 72-73.
Yuan J S.Damage characteristics and green prevention and control countermeasures of Stephanitis chinensis[J]. China Agricultural Informatics, 2017(21): 72-73.
[7] 罗力夫. 茶脊冠网蝽简介[J]. 植物保护, 1982(4): 34-35.
Luo L F.Brief introduction of the tea lace bug(Stephanitis chinensis Drake)[J]. Plant Protection, 1982(4): 34-35.
[8] 杜颖, 冉述国. 恩施龙凤茶园茶网蝽的发生与控制探讨[J]. 农村经济与科技, 2018, 29(9): 70, 84.
Du Y, Ran S G. The occurrence and control of tea lace bug in Enshi [J]. Rural Economy and Science-Technology, 2018, 29(9): 70, 84.
[9] 张元龙, 涂作菊, 岳建武. 陕南茶区茶网蝽的发生与控制探讨[J]. 现代农业科技, 2015(18): 152-153.
Zhang Y L, Tu Z J, Yue J W.The currence and control of tea lace bugs in tea area of southern Shaanxi[J]. Modern Agricultural Science and Technology, 2015(18): 152-153.
[10] 吴平昌, 马荣彬, 钟运昆, 等. 不同浓度的高氯·啶虫脒防治茶网蝽显著性分析[J]. 陕西农业科学, 2016, 62(1): 27-28.
Wu P C, Ma R B, Zhong Y K, et al.Significance analysis of different concentrations of beta-cypermethrin·acetamipridin controlling tea lace bug[J]. Shaanxi Journal of Agricultural Sciences, 2016, 62(1): 27-28.
[11] 李增义, 寇长福, 朱陵侠, 等. 4种药剂对茶脊冠网蝽防效试验[J]. 陕西农业科学, 2017, 63(10): 65-66.
Li Z Y, Kou C F, Zhu L X, et al.Control effect of 4 insecticides on Stephanitis chinensis[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(10): 65-66.
[12] 罗鸿, 崔清梅, 张强. 3种生物源农药混配剂对茶网蝽的田间防效[J]. 中国茶叶, 2019, 41(4): 23-24.
Luo H, Cui Q M, Zhang Q.Control effect of three kinds of pesticide mixtures on Stephanitis chinensis in field[J]. China Tea, 2019, 41(4): 23-24.
[13] 陈世春, 彭萍, 鲁成业, 等. 10种药剂防治茶网蝽田间药效试验[J]. 茶叶学报, 2019, 60(2): 85-87.
Chen S C, Peng P, Lu C Y, et al.Efficacies of ten pesticides on controlling Stephanotis chinensis Drake at tea plantations[J]. Acta Tea Sinica, 2019, 60(2): 85-87.
[14] 罗鸿, 崔清梅, 蔡晓明, 等. 茶网蝽安全防治药剂与高效施药技术研究[J]. 茶叶科学, 2021, 41(3): 361-370.
Luo H, Cui Q M, Cai X M, et al.Study on the safe pesticides and efficient application method against tea lace bug (Stephanitis chinensis Drake)[J]. Journal of Tea Science, 2021, 41(3): 361-370.
[15] 张汉鹄, 谭济才. 中国茶树害虫及其无公害治理[M]. 合肥: 安徽科学技术出版社, 2004.
Zhang H H, Tan J C.Chinese tea pests and their pollution-free control [M]. Hefei: Anhui Science and Technology Press, 2004.
[16] 陈世春, 江宏燕, 胡翔, 等. 重庆茶网蝽及其主要天敌军配盲蝽的发生特点[J]. 贵茶, 2021(1): 58-64.
Chen S C, Jiang H Y, Hu X, et al.The occurrence characteristics of Stephanitis chinensis and its major predator Stethoconus japonicus in Chongqing tea plantation[J]. Journal of Guizhou Tea, 2021(1): 58-63.
[17] 四川省苗溪茶场茶叶科学研究所. 茶脊冠网蝽的主要天敌——军配盲蝽[J]. 昆虫知识, 1979(2): 69-72.
Sichuan Miaoxi Tea Farm Tea Science Research Institute. The main natural enemy of Stephanitis chinensis Drake: Stethoconus japonicas Schumacher[J]. Entomological Knowledge, 1979(2): 69-72.
[18] 王朝禺. 茶脊冠网蝽生物学及其防治[J]. 昆虫知识, 1988(6): 339-341.
Wang C Y.The biology and control of the tea lace bug(Stephanitis chinensis Drake)[J]. Chinese Bulletin of Entomology, 1988(6): 339-341.
[19] 卢绍辉. 悬铃木方翅网蝽种群遗传结构及扩散传播机制研究[D]. 长沙: 中南林业科技大学, 2020.
Lu S H.Study on the population genetic structure and diffusion mechanism of Sycamore lace bug, Corythucha ciliata (Say) [D]. Changsha: Central South University of Forestry and Technology, 2020.
[20] Rozas J.DNA sequence polymorphism analysis using DnaSP[J]. Methods in Molecular Biology, 2009, 537: 337-350.
[21] Librado P, Rozas J.DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
[22] 魏丹丹. 书虱种群遗传多样性及线粒体基因组进化研究[D]. 重庆: 西南大学, 2012.
Wei D D.Population genetic diversity and mitochondrial genome analysis of psocids (Psocoptera: Liposcelididae) [D]. Chongqing: Southwest University, 2012.
[23] Excoffier L, Laval G, Schneider S.Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
[24] Tajima F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[25] Fu Y X.Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
[26] Chen J, Liu Q, Gao L W.Visual tea leaf disease recognition using a convolutional neural network model[J]. Symmetry, 2019, 11(3): 343. doi: 10.3390/sym11030343.
[27] Guindon S, Dufayard J F, Lefort V, et al.New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307-321.
[28] Yoshizawa K, Johnson K P.Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea)[J]. Genetica, 2013, 141(10/12): 491-499.
[29] Jermiin L S, Graur D, Lowe R M, et al.Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes[J]. Journal of Molecular Evolution, 1994, 39(2): 160-173.
[30] Li P W, Wang X Q, Chen S C, et al.The complete mitochondrial genome of the tea lace bug, Stephanitis chinensis (Hemiptera: Tingidae)[J]. Mitochondrial DNA Part B, 2017, 2(2): 607-608.
[31] 杨金宏, 谢满超, 文欣茹, 等. 茶网蝽线粒体基因组全序列测定及系统发育分析[J]. 茶叶科学, 2022, 42(6): 839-850.
Yang J H, Xie M C, Wen X R, et al.The complete mitochondrial genome sequence and phylogenetic analysis of the Stephanitis chinensis[J]. Journal of Tea Science, 2022, 42(6): 839-850.
[32] Lanzavecchia S B, Cladera J L, Faccio P, et al.Origin and distribution of Ceratitis capitata mitochondrial DNA haplotypes in Argentina[J]. Annals of the Entomological Society of America, 2008, 101(3): 627-638.
[33] 张元臣, 卢绍辉, 龚东风, 等. 基于COI基因的我国悬铃木方翅网蝽(半翅目:网蝽科)种群遗传多样性和遗传结构分析[J]. 林业科学, 2021, 57(8): 102-111.
Zhang Y C, Lu S H, Gong D F, et al.Analysis of genetic diversity and genetic structure in geographic populations of Corythucha ciliata (Hemiptera: Tingidae) from China based on mitochondrial DNA COⅠ gene sequences[J]. Scientia Silvae Sinicae, 2021, 57(8): 102-111.
[34] 李增义, 陈宏, 涂作菊, 等. 安康市茶脊冠网蝽发生动态及综合防控技术[J]. 中国植保导刊, 2018, 38(1): 58-61.
Li Z Y, Chen H, Tu Z J, et al.Occurrence dynamics and integrated prevention and control technology of Stephanitis chinensis in Ankang city[J]. China Plant Protection, 2018, 38(1): 58-61.
文章导航

/