欢迎访问《茶叶科学》,今天是
研究报告

酚酸介导下连作茶树根际病原菌Alternaria sp.及其拮抗菌Pseudomonas sp.变化

  • 李艳春 ,
  • 王义祥 ,
  • 叶菁 ,
  • 李兆伟
展开
  • 1.福建省农业科学院资源环境与土壤肥料研究所/福建省红壤山地农业生态过程重点实验室,福建 福州 350013;
    2.福建农林大学生命科学学院,福建 福州 350002
李艳春,女,助理研究员,主要从事生态农业方面的研究,lyc7758@163.com

收稿日期: 2023-07-20

  修回日期: 2023-09-14

  网络出版日期: 2024-01-08

基金资助

福建省自然科学基金(2019J01100)、中央引导地方科技发展专项(2021L3021)

Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids

  • LI Yanchun ,
  • WANG Yixiang ,
  • YE Jing ,
  • LI Zhaowei
Expand
  • 1. Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China;
    2. Life Sciences College of Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2023-07-20

  Revised date: 2023-09-14

  Online published: 2024-01-08

摘要

茶树是我国重要的经济作物,然而长期宿根连作铁观音茶园存在土壤微生物群落结构失衡、病害加重等连作障碍问题,探究铁观音茶树连作障碍形成的分子机制对寻求有效的防控技术具有重要意义。采用微生物分离纯化、平板对峙等方法对铁观音茶树根际病原菌及其拮抗菌进行分离、鉴定,并对不同宿根连作年限(0、1、10、20 a)铁观音茶树根际土壤中的病原菌和拮抗菌数量进行定量分析;同时运用高效液相色谱(HPLC)技术分析不同连作年限根际土壤中酚酸含量变化,并模拟土壤中各酚酸配比,研究酚酸类物质对茶树根际病原菌及其拮抗菌的影响。结果显示,从连作20 a患病铁观音茶树根系分离鉴定到1株病原真菌链格孢菌(Alternaria sp.),并从根际土壤中筛选到1株拮抗菌假单胞菌(Pseudomonas sp.)。荧光定量PCR分析发现,与1 a茶园相比,20 a茶园土壤中的链格孢菌绝对含量显著偏高,而假单胞菌含量却显著偏低。连作茶园根际土壤中共检测到对羟基苯甲酸、香草酸、丁香酸、香兰素、阿魏酸5种酚酸类物质,其平均配比为38∶229∶11∶11∶3。连作条件下酚酸类物质并未在土壤中累积,而是随种植年限的延长呈现出先增加后降低的趋势。模拟试验发现,中低浓度(30~120 μmol·L-1)的混合酚酸能够显著促进链格孢菌菌丝的生长,单一酚酸对羟基苯甲酸、香草酸和丁香酸在低浓度(30 μmol·L-1和60 μmol·L-1)时也能够显著促进链格孢菌菌丝的生长。对羟基苯甲酸对假单胞菌的生长有抑制作用,并且随着浓度的增加抑制作用增强,混合酚酸以及其他单一酚酸对假单胞菌的生长无明显作用。由此可见,铁观音根系分泌物酚酸类物质对根际土壤关键微生物菌群具有不同的生态效应,是引起微生物群落结构失衡、病害增加等连作障碍问题的重要因素。研究结果为进一步揭示铁观音茶树连作障碍机理提供一些理论依据。

本文引用格式

李艳春 , 王义祥 , 叶菁 , 李兆伟 . 酚酸介导下连作茶树根际病原菌Alternaria sp.及其拮抗菌Pseudomonas sp.变化[J]. 茶叶科学, 2023 , 43(6) : 823 -834 . DOI: 10.13305/j.cnki.jts.2023.06.007

Abstract

Tea plant is an important economic crop in China. Long-term continuous cropping of tea plants has resulted in severe problems such as the imbalance of soil microbial community structure, soil disease exacerbation. Exploring the molecular mechanism underlying the formation of continuous cropping obstacles in Tieguanyin tea gardens is of great significance for seeking effective techniques for preventing and controlling the continuous cropping obstacle phenomenon. In this study, the pathogen and its antagonistic bacteria were isolated from the rhizosphere of Tieguanyin tea garden and identified by methods such as microbial isolation and purification, and plate confrontation. Quantitative analysis was conducted on the number of pathogen and its antagonistic bacteria in the rhizospheric soils of different continuous cropping years (0, 1, 10, and 20 years). Simultaneously, high-performance liquid chromatography (HPLC) technology was used to detect the changes of phenolic acid contents in the rhizospheric soils of different continuous cropping years, and the ratio of various phenolic acids in the soils was simulated to investigate the effects of phenolic acids on the rhizospheric pathogen and its antagonistic bacteria. The results show that one pathogenic fungus Alternaria sp. was isolated and identified from the infected roots of Tieguanyin under 20 years’ continuous cropping, and an antagonistic bacteria Pseudomonas sp. was identified from the rhizospheric soils. Fluorescence quantitative PCR analysis shows that the content of Alternaria sp. in 20 years’ continuous cropping soils was significantly higher than 1 year tea garden, while the content of Pseudomonas sp. was significantly lower. Five phenolic acids, including p-hydroxybenzoic acid, vanillic acid, syringic acid, vanillin, and ferulic acid, were detected in the rhizospheric soils, with an average ratio of 38∶229∶11∶11∶3. Phenolic acids did not accumulate in the soils, but showed a trend of first increasing and then decreasing with the increase of continuous cropping years. Simulation experiments found that mixed phenolic acids at low to medium concentrations (30-120 mmol·L-1) could significantly promote the mycelial growth of Alternaria sp. while single phenolic acid such as p-hydroxybenzoic acid, vanillic acid, and syringic acid at low concentrations (30 mmol·L-1 and 60 mmol·L-1) also significantly accelerated the mycelial growth of Alternaria sp.. However, p-hydroxybenzoic acid had an inhibitory effect on the growth of Pseudomonas sp., and the inhibitory effect increased with the increase of p-hydroxybenzoic acid concentration. Mixed phenolic acid and other single phenolic acids had no significant effect on the growth of Pseudomonas sp.. Therefore, phenolic acids, the root exudates of Tieguanyin tea plants, have different ecological effects on the key microbial communities in the rhizospheric soils, and are important factors causing the imbalance of microbial community structure and the increase of severe diseases and other continuous cropping obstacles. The research results provided a theoretical basis for further revealing the mechanism of continuous cropping obstacles in Tieguanyin tea plants.

参考文献

[1] 罗倩, 张珍明, 向准, 等. 不同种植年限鸟王茶产地土壤物理性质及生长特征[J]. 西南农业学报, 2017, 30(12): 2746-2750.
Luo Q, Zhang Z M, Xiang Z, et al.Soil physical properties of Niaowang tea growing area with different cultivation years and growth characteristics of Niaowang tea[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(12): 2746-2750.
[2] 李艳春. 不同宿根年限铁观音茶园酸化土壤微生物群落特征及改良措施研究[D]. 福州: 福建农林大学, 2017.
Li Y C.Microbial community characteristics of acidified Tieguanyin tea soils with different ratooning ages and improvement measures [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[3] Han W Y, Kemmitt S J, Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology Biochemistry, 2007, 39(7): 1468-1478.
[4] Li Y C, Li Z W, Arafat Y, et al.Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020, 70(1): 2762-2770.
[5] 孙秀山, 封海胜, 万书波, 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001, 27(5): 617-621.
Sun X S, Feng H S, Wang S B, et al.Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions[J]. Acta Agronomica Sinica, 2001, 27(5): 617-621.
[6] 胡元森, 刘亚峰, 吴坤, 等. 黄瓜连作土壤微生物区系变化研究[J]. 土壤通报, 2006, 37(1): 126-129.
Hu Y S, Liu Y F, Wu K, et al.Variation of microbial community structure in relation to successive cucumber cropping soil[J]. Chinese Journal of Soil Science, 2006, 37(1): 126-129.
[7] 周宝利, 徐妍, 尹玉玲, 等. 不同连作年限土壤对茄子土壤生物学活性的影响及其嫁接调节[J]. 生态学杂志, 2010, 29(2): 290-294.
Zhou B L, Xu Y, Yin Y L, et al.Effects of different years continuous cropping and grafting on the biological activities of eggplant soil[J]. Chinese Journal of Ecology, 2010, 29(2): 290-294.
[8] Li A Y, Wei Y, Sun Z J, et al.Analysis of bacterial and fungal community structure in replant strawberry rhizosphere soil with denaturing gradient gel electrophoresis[J]. African Journal of Biotechnology, 2012, 11(49): 10962-10969.
[9] 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J]. 生态学杂志, 2013, 32(1): 64-71.
Lin S, Zhuang J Q, Chen T, et al.Microbial diversity in rhizosphere soils of different planting year tea trees: an analysis with phospholipid fatty acid biomarkers[J]. Chinese Journal of Ecology, 2013, 32(1): 64-71.
[10] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799.
[11] 林文雄, 陈婷, 周明明. 农业生态学的新视野[J]. 中国生态农业学报, 2012, 20(3): 253-264.
Lin W X, Chen T, Zhou M M.New dimensions in agroecology[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 253-264.
[12] Li X G, Ding C F, Hua K, et al.Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology & Biochemistry, 2014, 78: 149-159.
[13] Ye S F, Zhou Y H, Sun Y, et al.Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt[J]. Environmental and Experimental Botany, 2006, 56(3): 255-262.
[14] 沈怡斐, 鄂垚瑶, 阳芳, 等. 西瓜根系分泌物中氨基酸组分对多黏类芽孢杆菌SQR-21趋化性及根际定殖的影响[J]. 南京农业大学学报, 2017, 40(1): 101-108.
Shen Y F, E Y Y, Yang F, et al. Effects of amino acids in root exudates of watermelon on the chemotactic reaction and root colonization of Paenibacillus polymyxa SQR-21[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 101-108.
[15] 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质[J]. 应用生态学报, 2000, 11(1): 152-156.
Zhang S X, Gao Z Q.Continuous cropping obstacle and rhizospheric microecology Ⅱ. Root exudates and phenolic acids[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 152-156.
[16] 胡元森, 吴坤, 李翠香, 等. 酚酸物质对黄瓜幼苗及枯萎病菌茵丝生长的影响[J]. 生态学杂志, 2007, 26(11): 1738-1742.
Hu Y S, Wu K, Li C X, et al.Effects of phenolic compounds on the growth of Cucumis sativus seedlings and Fusarium oxysporum hypha[J]. Chinese Journal of Ecology, 2007, 26(11): 1738-1742.
[17] Zhou X G, Wu F Z.p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. Plos One, 2012, 7(10): e48288. doi: 10.1371/journal.pone.0048288.
[18] Tian G L, Bi Y M, Cheng J D, et al.High concentration of ferulic acid in rhizosphere soil accounts for the occurrence of Fusarium wilt during the seedling stages of strawberry plants[J]. Physiological and Molecular Plant Pathology, 2019, 108: 101435. doi: 10.1016/j.pmpp.2019.101435.
[19] 张淑香, 高子勤, 刘海玲. 连作障碍与根际微生态研究Ⅲ. 土壤酚酸物质及其生物学效应[J]. 应用生态学报, 2000, 11(5): 741-744.
Zhang S X, Gao Z Q, Liu H L.Continuous cropping obstacle and rhizospheric microecology Ⅲ. Soil phenolic acids and their biological effect[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 741-744.
[20] 孙海兵, 毛志泉, 朱树华. 环渤海湾地区连作苹果园土壤中酚酸类物质变化[J]. 生态学报, 2011, 31(1): 90-97.
Sun H B, Mao Z Q, Zhu S H.Changes of phenolic acids in the soil of replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2011, 31(1): 90-97.
[21] 李贺勤, 刘奇志, 张林林, 等. 草莓连作土壤酚酸类物质积累对土壤线虫的影响[J]. 生态学杂志, 2014, 33(1): 169-175.
Li H Q, Liu Q Z, Zhang L L, et al.Accumulation of phenolic acids in the monocultured strawberry soils and their effect on soil nematodes[J]. Chinese Journal of Ecology, 2014, 33(1): 169-175.
[22] Chen S L, Zhou B L, Lin S S, et al.Accumulaion of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle[J]. African Journal of Biotechnology, 2011, 10(14): 2659-2665.
[23] Kaur H, Kaur R, Kaur S, et al.Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites[J]. Plos One, 2009, 4(3): e4700. doi: 10.1371/journal.pone.0004700.
[24] Eisenhauer N, Scheu S, Jousset A.Bacterial diversity stabilizes community productivity[J]. Plos One, 2012, 7(3): e34517. doi: 10.1371/journal.pone.0034517.
[25] Lin R Y, Wang H B, Guo X K, et al.Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils[J]. Allelopathy Journal, 2011, 28(2): 225-236.
[26] Zhou X, Yu G, Wu F.Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities[J]. European Journal of Soil Science, 2012, 63(3): 332-340.
[27] 罗文富, 喻盛甫, 贺承福, 等. 三七根腐病病原及复合侵染的研究[J]. 植物病理学报, 1997, 27(1): 85-91.
Luo W F, Yu S F, He C F, et al.On the combined infection of root rot pathogens on Panax notoginseng[J]. Acta Phytopathologica Sinica, 1997, 27(1): 85-91.
[28] 孙炳剑, 袁红霞, 邢小萍, 等. 郑州地区冷季型草坪草根腐病病原鉴定[J]. 草原与草坪, 2007(6): 51-54.
Sun B J, Yuan H X, Xing X P, et al.Identification of turfgrass root rot disease in Zhengzhou[J]. Grassland and Turf, 2007(6): 51-54.
[29] 田给林, 毕艳孟, 孙振钧, 等. 酚酸类物质在作物连作障碍中的化感效应及其调控研究进展[J]. 中国科技论文, 2016, 11(6): 699-705.
Tian G L, Bi Y M, Sun Z J, et al.Progression allelopathic effect and regulation of phenolic acids for continuous cropping obstacle system[J]. China Sciencepaper, 2016, 11(6): 699-705.
[30] Hao W Y, Ren L X, Ran W, et al.Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2010, 336(1): 485-497.
[31] 杨瑞秀, 高增贵, 姚远, 等. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应[J]. 应用生态学报, 2014, 25(8): 2355-2360.
Yang R X, Gao Z G, Yao Y, et al.Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f.sp. melonis[J]. Chinese Journal of Applied Ecology, 2014, 25(8): 2355-2360.
[32] Wu H M, Wu L K, Wang J Y, et al.Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil[J]. Frontiers in Microbiology, 2016, 7: 335. doi: 10.3389/fmicb.2016.00335.
文章导航

/