[1] Luo G, Gao S J.Global health concerns stirred by emerging viral infections[J]. Journal of Medical Virology, 2020, 92(4): 399-400.
[2] Fisher R A, Gollan B, Helaine S.Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464.
[3] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo[J]. Advanced Functional Materials, 2021, 31(14): 2008720. doi: 10.1002/adfm.20200872.
[4] Afrasiabi S, Pourhajibagher M, Raoofian R, et al.Therapeutic applications of nucleic acid aptamers in microbial infections[J]. Journal of Biomedical Science, 2020, 27(1): 6. doi: 10.1186/s12929-019-0611-0.
[5] Komerik N, Macrobert A J.Photodynamic therapy as an alternative antimicrobial modality for oral infections[J]. Journal of Environmental Pathology and Toxicology, 2006, 25(1/2): 487-504.
[6] Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
[7] Zapletal K, Machnik G, Okopień B.Polyphenols of antibacterial potential: may they help in resolving some present hurdles in medicine?[J]. Folia Biologica, 2022, 68(3): 87-96.
[8] Anon. Jim O'Neill[J]. Nature Reviews Drug Discovery, 2016, 15(8): 526. doi: 10.1038/nrd.2016.160.
[9] Zhen X M, Lundborg C S, Sun X S, et al.Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review[J]. Antimicrobial Resistance &Infection Control, 2019, 8: 137. doi: 10.1186/s13756-019-0590-7.
[10] Willyard C.The drug-resistant bacteria that pose the greatest health threats[J]. Nature, 2017, 543(7643): 15. doi: 10.1038/nature.2017.21550.
[11] Wang Y, Yang Y N, Shi Y R, et al.Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives[J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106.
[12] Paterson D L, Harris P N.Colistin resistance: a major breach in our last line of defence[J]. The Lancet Infectious Diseases, 2016, 16(2): 132-133.
[13] Yu M, Chua S L.Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse?[J]. Medicinal Research Reviews, 2020, 40(3): 1103-1116.
[14] Li Y, Miao Y, Yang L N, et al.Recent advances in the development and antimicrobial applications of metal-phenolic networks[J]. Advanced Science, 2022, 9(27): e2202684. doi: 10.1002/advs.202202684.
[15] Jelinkova P, Mazumdar A, Sur V P, et al.Nanoparticle-drug conjugates treating bacterial infections[J]. Journal of Controlled Release, 2019, 307: 166-185.
[16] Gupta A, Mumtaz S, Li C H, et al.Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chemical Society Reviews, 2019, 48(2): 415-427.
[17] Li H, Zou Y, Jiang J.Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation[J]. Dalton Transactions, 2020, 49(27): 9274-9281.
[18] Saadi N, Alotaibi K, Hassan L, et al.Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment[J]. Nanotechnology, 2021, 32(32): 325103. doi: 10.1088/1361-6528/abfd59.
[19] Cueva C, Silva M, Pinillos I, et al.Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer[J]. Nutrients, 2020, 12(3): 625. doi: 10.3390/nu12030625.
[20] Kumar H, Bhardwaj K, Cruz-martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review[J]. Molecules, 2021, 26(11): 3447. doi: 10.3390/molecules26113447.
[21] Bae J Y, Seo Y H, Oh S W.Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents[J]. Food Science and Biotechnology, 2022, 31(8): 985-997.
[22] 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14.
Yao M, Li D X, Xie Z W.Recent advance on anti-cardiovascular inflammation of major characteristic compounds in tea[J]. Journal of Tea Science, 2020, 40(1): 1-14.
[23] 余春燕, 朱坤, 黄建安, 等. 茶多酚对心肌保护作用的研究进展[J]. 食品科学, 2022, 43(3): 296-305.
Yu C Y, Zhu K, Huang J A, et al.Advances in the study of cardioprotective effects of tea polyphenols on myocardium[J]. Food Science, 2022, 43(3): 296-305.
[24] 林勇, 谢思玲, 柯菀萍, 等. 安化黑茶的降血糖作用及其机理[J]. 中国茶叶, 2023, 45(2): 1-7.
Lin Y, Xie S L, Ke W P, et al.Study on the hypoglycemic effect and mechanism of Anhua dark tea[J]. China Tea, 2023, 45(2): 1-7.
[25] 雷丽萍, 朱跃骅, 张剑, 等. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531.
Lei L P, Zhu Y H, Zhang J, et al.Effects of tea polyphenols on quality and microorganisms of Pseudosciaena crocea during iced storage[J]. Journal of Tea Science, 2017, 37(5): 523-531.
[26] 张杨波, 饶甜甜, 刘仲华. 茶多酚的抗癌作用机制及EGCG纳米载体技术研究进展[J]. 食品工业科技, 2019, 40(16): 343-348.
Zhang Y B, Rao T T, Liu Z H.Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology[J]. Science and Technology of Food Industry, 2019, 40(16): 343-348.
[27] Olmedo-Juárez A, Briones-Robles T I, Zaragoza-Bastida A, et al. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health[J]. Microbial Pathogenesis, 2019, 136: 103660. doi: 10.1016/j.micpath.2019.103660.
[28] Ignasimuthu K, Prakash R, Murthy P S, et al.Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria[J]. LWT, 2019, 105: 103-109.
[29] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462.
Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462.
[30] Davidson P M, Taylor T M, Schmidt S E.Chemical preservatives and natural antimicrobial compounds [M]//Doyle M P, Buchanan R L. Food microbiology: fundamentals and frontiers. Washington: ASM Press, 2012: 765-801.
[31] Moulton M C, Braydich-Stolle L K, Nadagouda M N, et al. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols[J]. Nanoscale, 2010, 2(5): 763-770.
[32] Nadagouda M N, Varma R S.Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract[J]. Green Chemistry, 2008, 10(8): 859-862.
[33] Pelle F D, Scroccarello A, Sergi M, et al.Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds[J]. Food Chemistry, 2018, 256: 342-349.
[34] Farrokhnia M, Karimi S, AskariaN S. Strong hydrogen bonding of gallic acid during synthesis of an efficient AgNPs colorimetric sensor for melamine detection via dis-synthesis strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6672-6684.
[35] Huo J J, Jia Q Y, Wang K, et al.Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications[J]. Langmuir, 2023, 39(3): 1238-1249.
[36] Wang Y R, Zou Y, Wu Y, et al.Universal antifouling and photothermal antibacterial surfaces based on multifunctional metal-phenolic networks for prevention of biofilm formation[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48403-48413.
[37] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36: 2307680. doi: 10.1002/adma.202307680.
[38] Wang X J, Feng Y, Chen C F, et al.Preparation, characterization and activity of tea polyphenols-zinc complex[J]. LWT-Food Science and Technology, 2020, 131: 109810. doi: 10.1016/j.lwt.2020.109810.
[39] Liu L L, Ge C, Zhang Y, et al.Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation[J]. Biomaterials Science, 2020, 8(17): 4852-4860.
[40] Zhang C Y, Huang L J, Sun D W, et al.Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity[J]. Journal of Hazardous Materials, 2022, 426: 127824. doi: 10.1016/j.jhazmat.2021.127824.
[41] Zhang Y, He Y, Shi C X, et al.Tannic acid-assisted synthesis of biodegradable and antibacterial mesoporous organosilica nanoparticles decorated with nanosilver[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1695-1702.
[42] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396.
[43] Seliktar D.Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128.
[44] Hoffman A S.Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2002, 54(1): 3-12.
[45] Keplinger C, Sun J Y, Foo C C, et al.Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987.
[46] Chan K W Y, Liu G S, Song X L, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability[J]. Nature Materials, 2013, 12(3): 268-275.
[47] Larson C, Peele B, Li S, et al.Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
[48] Saha A, Adamcik J, Bolisetty S, et al.Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features[J]. Angewandte Chemie-International Edition, 2015, 54(18): 5408-5412.
[49] Nyström G, Fernández-Ronco M P, Bolisetty S, et al. Amyloid templated gold aerogels[J]. Advanced Materials, 2016, 28(3): 472-478.
[50] Shen S H, Fan D D, Yuan Y, et al.An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds[J]. Chemical Engineering Journal, 2021, 426: 130610. doi: 10.1016/j.cej.2021.130610.
[51] Tan H Q, Sun J J, Jin D W, et al.Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching[J]. Biomaterials Science, 2020, 8(12): 3334-3347.
[52] Dong Z Q, Lin Y Y, Xu S B, et al.NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration[J]. Materials & Design, 2023, 225: 111487. doi: 10.1016/j.matdes.2022.111487.
[53] Deng H L, Yu Z P, Chen S G, et al.Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection[J]. Carbohydrate Polymers, 2020, 230: 115565. doi: 10.1016/j.carbpol.2019.115565.
[54] Zhu Y N, Zhang J M, Song J Y, et al.A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment[J]. Advanced Functional Materials, 2020, 30(6): 1905493. doi: 10.1002/adfm.201905493.
[55] Ahmadian Z, Correia A, Hasany M, et al.A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration[J]. Advanced Healthcare Materials, 2021, 10(3): 2001122. doi: 10.1002/adhm.202001122.
[56] Jin F Y, Liao S Q, Li W, et al.Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range[J]. Carbohydrate Polymers, 2023, 299: 120195. doi: 10.1016/j.carbpol.2022.120195.
[57] Li M Y, Wang H, Hu J F, et al.Smart hydrogels with antibacterial properties built from all natural building blocks[J]. Chemistry of Materials, 2019, 31(18): 7678-7685.
[58] Liang Y Q, Li Z L, Huang Y, et al.Dual-dynamic-bond cross-linkedantibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J]. ACS Nano, 2021, 15(4): 7078-7093.
[59] Madni A, Kousar R, Naeem N, et al.Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25.
[60] Toragall V, Jayapala N, Muthukumar S P, et al.Biodegradable chitosan-sodium alginate-oleic acid nanocarrier promotes bioavailability and target delivery of lutein in rat model with no toxicity[J]. Food Chemistry, 2020, 330: 127195. doi: 10.1016/j.foodchem.2020.127195.
[61] Li F, Jin H M, Xiao J, et al.The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent[J]. Food Research International, 2018, 111: 351-360.
[62] Rezazadeh N H, Buazar F, Matroodi S.Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific Reports, 2020, 10(1): 19615. doi: 10.1038/s41598-020-76726-7.
[63] Riccucci G, Ferraris S, Reggio C, et al.Polyphenols from grape pomace: functionalization of chitosan-coated hydroxyapatite for modulated swelling and release of polyphenols[J]. Langmuir, 2021, 37(51): 14793-14804.
[64] Chen Q F, Wei L T, Lai Y P, et al.Preparation and characterization of tea polyphenols-chitosan-based nanoparticles and their application in starch films[J]. Bioresources, 2022, 17(3): 4306-4322.
[65] Sun X X, Wang Z, Kadouh H, et al.The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films[J]. LWT-Food Science and Technology, 2014, 57(1): 83-89.
[66] Yu Y L, Li P F, Zhu C L, et al.Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing[J]. Advanced Functional Materials, 2019, 29(35): 1904402. doi: 10.1002/adfm.201904402.
[67] Yu H P, Zhou Q, He D, et al.Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols[J]. International Journal of Biological Macromolecules, 2023, 253: 126859. doi: 10.1016/j.ijbiomac.2023.126859.
[68] Liang J, Yan H, Puligundla P, et al.Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review[J]. Food Hydrocolloids, 2017, 69: 286-292.
[69] Ashwar B A, Gani A.Noncovalent interactions of sea buckthorn polyphenols with casein and whey proteins: effect on the stability, antioxidant potential, and bioaccessibility of polyphenols[J]. ACS Food Science & Technology, 2021, 1(7): 1206-1214.
[70] Grace M H, Yousef G G, Esposito D, et al.Bioactive capacity, sensory properties, and nutritional analysis of a shelf stable protein-rich functional ingredient with concentrated fruit and vegetable phytoactives[J]. Plant Foods for Human Nutrition, 2014, 69(4): 372-378.
[71] Grace M H, Truong A N, Truong V D, et al.Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients[J]. Food Science & Nutrition, 2015, 3(5): 415-424.
[72] Ribnicky D M, Roopchand D E, Oren A, et al.Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1)[J]. Food Chemistry, 2014, 142: 349-357.
[73] Mushtaq M, Gani A, Gani A, et al.Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi)[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 25-32.
[74] Maroufi L Y, Ghorbani M, Tabibiazar M, et al.Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging[J]. International Journal of Biological Macromolecules, 2021, 183: 753-759.
[75] Giteru S G, Coorey R, Bertolatti D, et al.Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films[J]. Food Chemistry, 2015, 168: 341-347.
[76] Kavoosi G, Dadfar S M M, Purfard A M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing[J]. Journal of Food Science, 2013, 78(2): E244-E250. doi: 10.1111/1750-3841.12015.
[77] Cano A, Andres M, Chiralt A, et al.Use of tannins to enhance the functional properties of protein based films[J]. Food Hydrocolloids, 2020, 100: 105443. doi: 10.1016/j.foodhyd.2019.105443.
[78] Han Y Y, Lin Z X, Zhou J J, et al.Polyphenol-mediated assembly of proteins for engineering functional materials[J]. Angewandte Chemie-International Edition, 2020, 59(36): 15618-15625.
[79] Du T, Wang S C, Li X, et al.Hydrogen-bonded self-assembly coating as GRAS sprayable preservatives for fresh food safety[J]. Food Hydrocolloids, 2023, 145: 109089. doi: 10.1016/j.foodhyd.2023.109089.
[80] Zhang Y T, Pu C F, Tang W T, et al.Effects of four polyphenols loading on the attributes of lipid bilayers[J]. Journal of Food Engineering, 2020, 282: 110008. doi: 10.1016/j.jfoodeng.2020.110008.
[81] Zhang R, Li Q Y, Yang L L, et al.The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme-chitosan gradual sustained release composite coating[J]. International Journal of Food Science and Technology, 2022, 57(6): 3691-3701.
[82] Maherani B, Arab-Tehrany E, Mozafari M R, et al.Liposomes: a review of manufacturing techniques and targeting strategies[J]. Current Nanoscience, 2011, 7(3): 436-452.
[83] Huang L, Teng W D, Cao J X, et al.Liposomes as delivery system for applications in meat products[J]. Foods, 2022, 11(19): 3017. doi: 10.3390/foods11193017.
[84] Das A, Konyak P M, Das A, et al.Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial[J]. Heliyon, 2019, 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372.
[85] Rao S Q, Sun M L, Hu Y, et al.ɛ-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: preparation, characterization, and antibacterial activities[J]. LWT-Food Science and Technology, 2021, 146: 111422. doi: 10.1016/j.lwt.2021.111422.
[86] Sepahvand S, Amiri S, Radi M, et al.Effect of thymol and nanostructured lipid carriers (NLCs) incorporated with thymol as antimicrobial agents in sausage[J]. Sustainability, 2022, 14(4): 1973. doi: 10.3390/su14041973.
[87] Ezzat H M, Elnaggar Y S R, Abdallah O Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: design, in-vitro appraisal and in-vivo studies[J]. International Journal of Pharmaceutics, 2019, 565: 488-498.
[88] Joraholmen M W, Johannessen M, Gravningen K, et al.Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection[J]. Pharmaceutics, 2020, 12(12): 1203. doi: 10.3390/pharmaceutics12121203.