欢迎访问《茶叶科学》,今天是
研究报告

我国茶业碳汇的时空演变规律和空间分异格局研究

  • 袁俐雯 ,
  • 张俊飚 ,
  • 秦江楠
展开
  • 1.华中农业大学经济管理学院,湖北 武汉 430070;
    2.浙江农林大学经济管理学院,浙江 杭州 311300;
    3.浙江省乡村振兴研究院,浙江 杭州 311300
袁俐雯,女,博士研究生,主要从事农业资源与环境经济研究。

收稿日期: 2023-09-25

  修回日期: 2023-10-27

  网络出版日期: 2024-03-13

基金资助

浙江农林大学科研发展基金人才启动项目(2023FR015)、中国工程院咨询项目(2022-XY-53)

Study on the Spatiotemporal Evolution and Spatial Differentiation Pattern of Carbon Sink in China’s Tea Industry

  • YUAN Liwen ,
  • ZHANG Junbiao ,
  • QIN Jiangnan
Expand
  • 1. College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China;
    2. College of Economics and Management, Zhejiang A&F University, Hangzhou 311300, China;
    3. Zhejiang Rural Revitalization Research Institute, Hangzhou 311300, China

Received date: 2023-09-25

  Revised date: 2023-10-27

  Online published: 2024-03-13

摘要

茶园生态系统具有重要的碳库功能。分析测评茶园生产种植过程中的碳汇水平,对科学评估茶园潜在的生态价值,推动茶产业绿色低碳发展意义重大。选取全国16个茶叶主产省份1978—2020年数据,借助茶树生长周期的生物量模型、土壤含碳量模型核算评估了我国茶业碳汇的基本情况,利用重心拟合模型分析了茶业碳汇的时空演变规律,并结合地理探测器模型就其空间分异的驱动因子展开探讨。结果表明:(1)我国茶业碳汇总量呈阶段性增长态势,于2020年达到73 531.10万t,且土壤碳汇积累量高于植被碳汇,碳汇强度则具有“升-降-升”变化特征;(2)各省际茶业碳汇强度差异明显,高强度省份聚集在我国东部沿海和西部地区,碳汇重心长期位于湖南省境内,但稍有向西位移趋势;(3)农业补贴、农业经济发展水平是影响我国茶业碳汇空间分布格局的重要驱动力,但不同地区茶业碳汇空间分异的主导因子存在区别。基于此,从茶业碳汇的管理经营以及产业政策制定等方面提出相关建议。

本文引用格式

袁俐雯 , 张俊飚 , 秦江楠 . 我国茶业碳汇的时空演变规律和空间分异格局研究[J]. 茶叶科学, 2024 , 44(1) : 149 -160 . DOI: 10.13305/j.cnki.jts.2024.01.011

Abstract

The tea garden ecosystem has an important carbon storage function. Analyzing and evaluating the carbon sink level during the production and planting process of tea gardens is of great significance for scientifically evaluating the potential ecological value of tea gardens and promoting the green and low-carbon development of the tea industry. This paper selected data from 16 major tea producing provinces in China from 1978 to 2020, used biomass models of tea plant growth cycles and soil carbon content models to calculate and evaluate the basic situation of carbon sinks in China’s tea industry. The center of gravity fitting model was used to analyze the spatiotemporal evolution of carbon sinks in the tea industry, and the driving factors of spatial differentiation were explored in conjunction with geographic detector models. The results show that: (1) The total carbon sink of China’s tea industry had shown a phased growth trend, reaching 735.311 million tons in 2020, and the accumulation of soil carbon sink was higher than that of plant carbon sink. The carbon sink intensity showed a “rise-decrease-rise” characteristic. (2) There were significant differences in carbon sink intensity among different provinces in the tea industry. High-intensity provinces were concentrated in the eastern coastal and western regions of China, and the carbon sink gravity center had long been located within Hunan province, but there was a slight trend of westward displacement. (3) The agricultural subsidies and the development level of agricultural economy were important driving forces that affect the spatial distribution pattern of carbon sinks in China’s tea industry, but there were differences in the dominant factors for the spatial differentiation of carbon sinks in different regions. Based on this, this paper proposed relevant suggestions from the management and operation of carbon sinks in the tea industry, as well as the formulation of industrial policies.

参考文献

[1] 梅宇, 张朔. 2022年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2023, 45(4): 25-30.
Mei Y, Zhang S.Analysis of China's tea production and domestic sales in 2022[J]. China Tea, 2023, 45(4): 25-30.
[2] 冷杨, 童杰文, 黄萍, 等. 我国茶产业发展“十三五”回顾及“十四五”展望[J]. 中国茶叶, 2021, 43(9): 25-30.
Leng Y, Tong J W, Huang P, et al.The development of tea industry in China during the 13th Five-Year Plan Period and prospects for the 14th Five-Year Plan Period[J]. China Tea, 2021, 43(9): 25-30.
[3] Xue H, Ren X Y, Li S Y, et al.Assessment of private economic benefits and positive environmental externalities of tea plantation in China[J]. Environmental Monitoring & Assessment, 2013, 185(10): 8501-8516.
[4] Xu Q, Hu K L, Wang X L, et al.Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 233(1): 782-792.
[5] Ulhaq S, Boz I, Shahbaz P, et al.Evaluating eco-efficiency and optimal levels of fertilizer use based on the social cost and social benefits in tea production[J]. Environmental Science and Pollution Research International, 2020, 27(26): 33008-33019.
[6] 何燕, 李廷轩, 王永东. 低山丘陵区不同坡位茶园土壤有机碳特征研究[J]. 水土保持学报, 2009, 23(2): 122-126.
He Y, Li T X, Wang Y D.Soil organic carbon of tea plantation on different slope positions in low mountains and hills[J]. Journal of Soil and Water Conservation, 2009, 23(2): 122-126.
[7] Zhang M, Chen Y G, Fan D M, et al. Temporal evolution of carbon storage in Chinese tea plantations from1950 to 2010[J]. Pedosphere, 2017(1): 121-128.
[8] Fang J Y, Chen A P, Peng C H, et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(8): 2320-2322.
[9] 张敏, 陈永根, 于翠平, 等. 在茶园生产周期过程中茶树群落生物量和碳储量动态估算[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 687-694.
Zhang M, Chen Y G, Yu C P, et al.Dynamic assessments of plant biomass and carbon storage during the production cycle of tea gardens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 687-694.
[10] 吴乔明. 一种基于生物量模型的茶园碳汇量快速测算方法: CN115936914A [P].2023-04-07.
Wu Q M. A rapid calculation method for carbon sink in tea plantations based on biomass model: CN115936914A [P].2023-04-07.
[11] 朱仁欢, 郑子成, 李廷轩, 等. 植茶年限对土壤水稳性团聚体腐殖质组分特征的影响[J]. 环境科学研究, 2018, 31(6): 1096-1104.
Zhu R H, Zheng Z C, Li T X, et al.Effect of tea plantation age on humus fractions in soil water-stable aggregates[J]. Research of Environmental Sciences, 2018, 31(6): 1096-1104.
[12] Walkley A, Black A I.An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method[J]. Soil Science,1934, 37(1): 29-38.
[13] 刘彦随, 王介勇, 郭丽英. 中国粮食生产与耕地变化的时空动态[J]. 中国农业科学, 2009, 42(12): 4269-4274.
Liu Y S, Wang J Y, Guo L Y.The spatial-temporal changes of grain production and arable land in China[J]. Scientia Agricultura Sinica, 2009, 42(12): 4269-4274.
[14] 刘佳骏, 李雪慧, 史丹. 中国碳排放重心转移与驱动因素分析[J]. 财贸经济, 2013(12): 112-123.
Liu J J, Li X H, Shi D.Study on the shift of CO2 emissions gravity center and driving factors[J]. Finance & Trade Economics, 2013(12): 112-123.
[15] Fan L L, Liang S F, Chen H, et al.Spatial-temporal analysis of the geographical centroids for three major crops in China from 1949 to 2014[J]. Journal of Geographical Sciences, 2018, 28(11): 1672-1684.
[16] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
Wang J F, Xu C D.Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
[17] Muñoz Z J. ERA5-Land monthly averaged data from1950 to present [DS/OL]. [2023-09-25]. https://cds.climate. copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview.
[18] 吴芹瑶, 杨江帆, 林程, 等. 中国茶叶生产布局变迁研究[J]. 茶叶科学, 2022, 42(2): 290-300.
Wu Q Y, Yang J F, Lin C, et al.Research on the changes of China’s tea production layout[J]. Journal of Tea Science, 2022, 42(2): 290-300.
[19] 程书波, 李冲, 岳颖, 等. 1961—2020年我国中部地区气温和降水时空变化特征[J]. 水利水电技术(中英文), 2023, 54(6): 75-86.
Cheng S B, Li C, Yue Y, et al.Temporal and spatial variation characteristics of temperature and precipitation in central China from 1961 to 2020[J]. Water Resources and Hydropower Engineering, 2023, 54(6): 75-86.
[20] 韩文炎, 李鑫, 颜鹏, 等. 气候变化对茶叶生产的影响及应对技术展望[J]. 中国茶叶, 2020, 42(2): 19-23.
Han W Y, Li X, Yan P, et al.Effect of climate change on tea production and its adaptation technology prospect[J]. China Tea, 2020, 42(2): 19-23.
[21] 葛鹏飞, 王颂吉, 黄秀路. 中国农业绿色全要素生产率测算[J]. 中国人口·资源与环境, 2018, 28(5): 66-74.
Ge P F, Wang S J, Huang X L.Measurement for China’s agricultural green TFP[J]. China Population, Resources and Environment, 2018, 28(5): 66-74.
[22] 卢华, 周应恒, 张培文, 等. 农业社会化服务对耕地撂荒的影响研究——基于中国家庭大数据库的经验证据[J]. 中国土地科学, 2022, 36(9): 69-78.
Lu H, Zhou Y H, Zhang P W, et al.Impact of socialized agricultural services on farmland abandonment: empirical evidence based on Chinese family database[J]. 2022, 36(9): 69-78.
[23] 阮建云. 茶园生态系统固碳潜力及低碳茶叶生产技术[J]. 中国茶叶, 2010, 32(7): 6-9.
Ruan J Y.Carbon sequestration potential of tea plantation ecosystem and low-carbon tea production technology[J]. China Tea, 2010, 32(7): 6-9.
[24] 何小娟. 名山县茶园生态系统碳汇能力分析[D]. 成都: 四川农业大学, 2013.
He X J.Analysis the carbon sequestration capacity of the tea plantation of Mingshan county [D]. Chengdu: Sichuan Agricultural University, 2013.
文章导航

/