欢迎访问《茶叶科学》,今天是
研究报告

茶树叶片黄化变异相关的CAB基因家族鉴定及关键基因挖掘

  • 钟思彤 ,
  • 张亚真 ,
  • 游小妹 ,
  • 陈志辉 ,
  • 孔祥瑞 ,
  • 林郑和 ,
  • 伍慧妮 ,
  • 金珊 ,
  • 陈常颂
展开
  • 1.福建农林大学园艺学院,福建 福州 350002;
    2.福建省农业科学院茶叶研究所/国家茶树改良中心福建分中心,福建 福州 350012
钟思彤,女,硕士研究生,主要从事茶树遗传育种与分子生物学研究。

收稿日期: 2024-01-15

  修回日期: 2024-03-11

  网络出版日期: 2024-04-30

基金资助

福建省属公益类科研院所基本科研专项(2022R1029002、2021R1029003、2021R1029007)、国家现代农业产业技术体系(CARS-19)、农业高质量发展超越“5511”协同创新工程(XTCXGC2021004)、福建省农业科学院科技创新团队(CXTD2021006-1)

Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis)

  • ZHONG Sitong ,
  • ZHANG Yazhen ,
  • YOU Xiaomei ,
  • CHEN Zhihui ,
  • KONG Xiangrui ,
  • LIN Zhenghe ,
  • WU Huini ,
  • JIN Shan ,
  • CHEN Changsong
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Tea Research Institute, Fujian Academy of Agricultural Sciences/Fujian Branch, National Center for Tea Improvement, Fuzhou 350012, China

Received date: 2024-01-15

  Revised date: 2024-03-11

  Online published: 2024-04-30

摘要

捕光叶绿素a/b结合蛋白(Light-harvesting chlorophyll a/b binding protein,CAB)基因家族成员在植物叶片黄化变异中具有重要作用。本研究利用铁观音(Camellia sinensis Tieguanyin)基因组数据对CAB基因家族进行了筛选,并进行了生物信息学和表达模式分析;进一步以不同黄化、绿叶茶树品种(系)为材料,通过基因克隆和qRT-PCR,分析CABs基因的表达特性,结合叶色参数和叶绿素SPAD值的相关性分析筛选出与茶树黄化变异相关的关键CAB基因。结果表明,共鉴定到25个CAB基因家族成员,其氨基酸长度为167~337个,蛋白分子质量为18.5~37.1 kDa,大部分CAB成员属于稳定性蛋白和疏水性蛋白,并且亚细胞定位预测在叶绿体上;根据进化关系25个CAB家族成员分为13个亚家族,Lhcb1亚族的成员数量最多;启动子分析显示,CAB家族成员启动子中包含大量的光响应元件,还有其他与植物生长发育、激素和逆境胁迫响应相关的元件。从茶树中克隆Lhcb1亚家族成员,通过序列比对筛选出CAB1CAB6CAB7基因;表达分析显示,CAB1CAB6CAB7基因都具有组织表达特异性,在芽、叶和果实中表达量较高,并能响应多种逆境胁迫。qRT-PCR分析发现,CAB1CAB6CAB7基因在黄、绿茶树的叶片中具有一致的表达特性:与正常绿叶相比,黄化叶片中的CABs基因表达均显著下调;通过与叶色参数和叶绿素SPAD值的相关性分析,发现CAB1CAB6CAB7表达量与叶色参数a、b、L值以及叶绿素SPAD值均呈极显著相关(P<0.01),其中CAB1的基因表达量与叶色相关参数和叶绿素SPAD值的相关性最显著;烟草亚细胞定位结果显示,CAB1在细胞核、细胞膜和叶绿体上均有分布。以上研究初步解析了茶树CAB家族成员的基本特征,挖掘出与茶树叶色变异紧密相关CAB基因,后续可作为候选关键基因进行深入研究,以期为茶树叶色变异的分子调控机制的研究提供理论基础。

本文引用格式

钟思彤 , 张亚真 , 游小妹 , 陈志辉 , 孔祥瑞 , 林郑和 , 伍慧妮 , 金珊 , 陈常颂 . 茶树叶片黄化变异相关的CAB基因家族鉴定及关键基因挖掘[J]. 茶叶科学, 2024 , 44(2) : 175 -192 . DOI: 10.13305/j.cnki.jts.2024.02.007

Abstract

Members of the light-harvesting chlorophyll a/b binding protein (CAB) gene family play an important role in plant leaf yellowing variation. In this study, the CAB family members were identified from tea plant ‘Tieguanyin’ genomic data. The bioinformatics and expression patterns were analyzed. Furthermore, the expression patterns of the CABs gene were analyzed by gene cloning and qRT-PCR in tea cultivars with different leaf colors. The key CAB genes related to tea yellowing were screened by correlation analysis of leaf color parameters and chlorophyll SPAD values. The results show that 25 members of the CAB gene family were identified, their amino acid length ranged from 167-337 and the protein molecular weight ranged from 18.5-37.1 kDa. Most CAB members were stable and hydrophobic proteins, and distributed in chloroplast by the subcellular localization prediction. According to the evolutionary relationship, CAB family members are divided into 13 subfamilies, and the Lhcb1 subfamily has the most members. Cis-acting element analysis of promoter shows that CAB family members have a lot of light-responsive elements, as well as other elements related to growth and development, hormone response, and adversity stress. The members of Lhcb1 subfamily were cloned from tea plants, CAB1, CAB6, and CAB7 genes were screened by sequence alignment. The expression analysis shows that CAB1, CAB6, and CAB7 genes had tissue expression characteristics with higher expression levels in buds, leaves and fruits, and could respond to various stresses. Finally, the qRT-PCR indicates that the expressions of CAB1, CAB6, and CAB7 genes were consistent in the yellow and green leaves. Compared with green leaves, the expression of CAB genes in yellow leaves were significantly down-regulated. The correlation analysis of gene expressions and related leaf color parameters shows that the gene expressions of CAB1, CAB6, and CAB7 were significantly correlated with leaf color parameters a, b, L, and chlorophyll SPAD values (P<0.01). Among them, the expression of CAB1 shows the highest correlation coefficient. The subcellular localization analysis shows that CAB1 was distributed in the nucleus, cytoplasm, and chloroplasts. The studies analyzed the basic characteristics of CAB family members in tea plants and the key genes related to tea color variation were identified, which provided a theoretical basis for the molecular regulation mechanism of tea color variation.

参考文献

[1] 苏小东, 李梅. 高等植物光系统复合物结构生物学研究进展[J]. 自然杂志, 2021, 43(3): 165-175.
Su X D, Li M.Advances in structural biology of photosystem complexes in higher plants[J]. Chinese Journal of Nature, 2021, 43(3): 165-175.
[2] 石兰馨, 张晓平, 梁厚果. 捕光叶绿素a/b结合蛋白和cab基因[J]. 植物生理学通讯, 1995, 31(6): 470-476.
Shi L X, Zhang X P, Liang H G.Light harvesting chlorophyll a/b binding protein and cab gene[J]. Plant Physiology Communications, 1995, 31(6): 470-476.
[3] 罗玲. 捕光色素蛋白复合物的研究进展[J]. 现代农业科技, 2008, 1(22): 270-273.
Luo L.Research progress of light-harvesting pigment protein complexes[J]. Modern Agricultural Science and Technology, 2008, 1(22): 270-273.
[4] Sheen J Y, Bogorad L.Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types[J]. Proceedings of the National Academy of Sciences, 1986, 83(20): 7811-7815.
[5] Andersson J, Wentworth M, Walters R G, et al.Absence of the lhcb1 and lhcb2 proteins of the light-harvesting complex of photosystem Ⅱ: effects on photosynthesis, grana stacking and tness[J]. The Plant Journal, 2003, 35(3): 350-361.
[6] Kim E H, Li X P, Razeghifard R, et al.The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2009, 1787(8): 973-984.
[7] Ilíková I, Ilík P, Opatíková M, et al.Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6in Arabidopsis[J]. Plant Physiology, 2021, 187(4): 2691-2715.
[8] Zhang Q, Ma C, Wang X, et al.Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis[J]. Plant Biology, 2021, 23(5): 831-842.
[9] Luo J, Abid M, Tu J, et al.Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content[J]. International Journal of Molecular Sciences, 2022, 23(12): 6528. doi: 10.3390/ijms23126528.
[10] Zhang M, Senoura T, Yang X, et al.Lhcb2 gene expression analysis in two ecotypes of Sedumalfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator[J]. Biotechnology Letters, 2011, 33(9): 1865-1871.
[11] Deng Y S, Kong F Y, Zhou B, et al.Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2014, 80: 318-327.
[12] 李韵佳. 低温胁迫下三倍体枇杷微量捕光天线蛋白基因EjLhcb4.1/5/6的功能分析[D]. 重庆: 西南大学, 2020.
Li Y J.Functional characterization of light harvesting chlorophyll a/b binding antenna proteins EjLhcb4.1/5/6 genes in triploid loquat (Eriobotrya japonica) under cold stress [D]. Chongqing: Southwest University, 2021.
[13] 唐文莉. 毛竹Lhca基因的克隆和光照在转录水平对其表达的调控[D]. 北京: 中国林业科学研究院, 2008.
Tang W L.Cloning Lhca genes and at the transcriptional level light intensity regulating their expression of Phyllostachys edulis [D]. Beijing: Chinese Academy of Forestry, 2008.
[14] 李真, 刘明英, 韩小娇, 等. 东南景天捕光叶绿素a/b结合蛋白基因SaLhcb2的分离及功能[J]. 浙江农林大学学报, 2014, 31(6): 838-846.
Li Z, Liu M Y, Han X J, et al.Characterization of a light-harvesting chlorophyll a/b binding protein (LHCB) geneSaLhcb2 in Sedum alfredii[J]. Journal of Zhejiang A & F University, 2014, 31(6): 838-846.
[15] Liu M, Zhang S, Hu J, et al.Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice[J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17572-17577.
[16] Ma C, Cao J, Li J, et al.Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports, 2016, 6(1): 1-15.
[17] Liu Y, Pang D, Jiang H, et al.Identifying key genes involved in yellow leaf variation in ‘MenghaiHuangye’ based on biochemical and transcriptomic analysis[J]. Functional & Integrative Genomics, 2022, 22(2): 251-260.
[18] Wang L, Cao H, Chen C, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160-169.
[19] Ma C L, Chen L, Wang X C, et al.Differential expression analysis of different albescent stages of ‘AnjiBaicha’ (Camellia sinensis (L.) O. Kuntze) using cDNA microarray[J]. Scientia Horticulturae, 2012, 148: 246-254.
[20] 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1852.
Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1852.
[21] Umate P.Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice[J]. Plant Signaling & Behavior, 2010, 5(12): 1537-1542.
[22] Zou Z, Huang Q, An F. Genome-wide identification, classification and expression analysis of Lhc supergene family in castor bean (Ricinus communis L.) [J]. Agricultural Biotechnology, 2013, 2(6): 44. https://www.
proquest.com/scholarly-journals/genome-wide-identification-classification/docview/1476279495/se-2.
[23] Zou Z, Li M, Jia R, et al.Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae[J]. Gene, 2020, 748: 144685. doi: 10.1016/j.gene.2020.144685.
[24] Klimmek F, Sjödin A, Noutsos C, et al. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants[J]. Plant Physiology, 2006, 140(3): 793-804.
[25] Zou Z, Yang J.Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz)[J]. Gene, 2019, 702: 171-181.
[26] Zhao S, Gao H, Luo J, et al.Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress[J]. Plant Physiology and Biochemistry, 2020, 154: 517-529. doi: 10.1016/j.plaphy.2020.06.022.
[27] Wang Y, Tan X, PatersonA. Different patterns of gene structure divergence following gene duplication in Arabidopsis[J]. BMC Genomics, 2013, 14(1): 652. doi: 10.1186/1471-2164-14-652.
[28] Cannon S B, Mitra A, Baumgarten A, et al.The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4(10): 1-21.
[29] Ye J, Lin X, Yang Z, et al.The light-harvesting chlorophyll a/b-binding proteins of photosystem Ⅱ family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant[J]. Journal of Advanced Research, 2023. doi: 10.1016/j.jare.2023.12.017.
[30] 孙钦秒, 冷静, 李良璧, 等. 高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展[J]. 植物学通报, 2000, 17(4): 289-301.
Sun Q M, Leng J, Li L B, et al.Recent advances of studies on the structure and function of the light-harvesting chlorophyll a/b protein complex[J]. Chinese Bulletin of Botany, 2000, 17(4): 289-301.
[31] 张毅, 尹辉, 李丹, 等. 植物环境响应启动子的诱导元件及转录因子[J]. 中国生物工程杂志, 2007(7): 122-128.
Zhang Y, Yin H, Li D, et al.The cis-elements and transcription factors of plant environmental response promoters[J]. China Biotechnology, 2007(7): 122-128.
[32] Perveen S, Qu M, Chen F, et al.Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice[J]. Journal of Experimental Botany, 2020, 71(16): 4944-4957.
[33] Liu X, Cheng X, Cao J, et al.UV-B regulates seasonal greening of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui[J]. Plant Science, 2023, 328: 111569. doi: 10.1016/j.plantsci.
2022.111569.
[34] Liu X, Cao J, Cheng X, et al.CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis[J]. Tree Physiol. 2023, 43(8):1432-1443.
[35] Li X W, Zhu Y L, Chen C Y, et al.Cloning and characterization of two chlorophyll A/B binding protein genes and analysis of their gene family in Camellia sinensis[J]. Scientific Reports, 2020, 10(1): 4602-4633.
[36] 胡志航, 秦志远, 李静文, 等. 茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析[J]. 茶叶科学, 2023, 43(2): 183-193.
Hu Z H, Qin Z Y, Li J W, et al.Identification of the light-harvesting chlorophyll-protein complex gene CsLhcb2 and its response to low temperature in tea plants[J]. Journal of Tea Science, 2023, 43(2): 183-193.
[37] 秦志远, 胡志航, 杨妮, 等. 茶树捕光色素蛋白复合体CsLhcb1基因的鉴定及干旱胁迫响应分析[J]. 茶叶学报, 2023, 64(5): 10-18.
Qin Z Y, Hu Z H, Yang N, et al.Identification and drought stress response of CsLhcb1in tea plants[J]. Acta Tea Sinica, 2023, 64(5): 10-18.
[38] 邹智, 杨礼富, 安峰, 等. 橡胶树AtCAB1同源基因的克隆及其在稳定与衰老期叶片中的差异分析[J]. 热带农业科学, 2013, 33(4): 30-35.
Zou Z, Yang L F, An F, et al.Molecular cloning of a cDNA homologue to Arabidopsis CAB1 from Hevea brasiliensis and its different expression in mature and senescent rubber tree leaves[J]. Chinese Journal of Tropical Agriculture, 2013, 33(4): 30-35.
[39] Wang S, Wang P, Gao L, et al.Characterization and complementation of a chlorophyll-less dominant mutant GL1 in Lagerstroemia indica[J]. DNA and Cell Biology, 2017, 36(5): 354-366.
[40] Sattari Vayghan H, Nawrocki W J, Schiphorst C, et al.Photosynthetic light harvesting and thylakoid organization in a CRISPR/Cas9 Arabidopsis thaliana LHCB1 knockout mutant[J]. Frontiers in Plant Science, 2022, 13: 833032. doi: 10.3389/fpls.2022.833032.
[41] 赵渊祥, 王好运, 梁大曲, 等. 马尾松捕光复合体Ⅱ(Lhcb)基因家族鉴定及表达分析[J]. 植物生理学报, 2023, 59(8): 1583-1595.
Zhao Y X, Wang H Y, Liang D Q, et al.Identification and expression analysis of light-harvesting complex Ⅱ (Lhcb) gene family of Pinus massoniana[J]. Plant Physiology Journal, 2023, 59(8): 1583-1595.
[42] 王云鹤. 苎麻Lhc基因的鉴定和表达模式研究[D]. 武汉: 华中农业大学, 2020.
Wang Y H.Identification and expression profiling of Lhc genes in ramie [D]. Wuhan: Huazhong Agricultural University, 2020.
[43] 成浩, 陈明, 虞富莲, 等. 茶叶片阶段性返白过程中色素蛋白复合体的变化[J]. 植物生理学通讯, 2000(4): 300-304.
Chen H, Chen M, Yu F L, et al.The variation of pigment-protein complexes in the albescent stage of tea[J]. Plant Physiology Journal, 2000(4): 300-304.
[44] Du Y, Chen H, Zhong W, et al.Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant[J]. African Journal of Biotechnology, 2008, 7(12): 1881-1885.
[45] Wu Q, Chen Z, Sun W, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in plant science, 2016, 7: 332. doi: 10.3389/fpls.2016.00332.
文章导航

/