欢迎访问《茶叶科学》,今天是
研究报告

有机种植对茶园土壤微生物群落组成与多样性的影响

  • 严钰萧 ,
  • 周大鹏 ,
  • 杨艳芬 ,
  • 谢瑾 ,
  • 吕才有 ,
  • 杨广容 ,
  • 文勤枢
展开
  • 1.云南农业大学茶学院,云南 昆明 650201;
    2.德宏州茶叶技术推广站,云南 芒市 678400
严钰萧,男,在读硕士,主要研究方向为茶树栽培与生理生态等,yyxwuyua@163.com。

收稿日期: 2024-01-07

  修回日期: 2024-02-20

  网络出版日期: 2024-04-30

基金资助

云南省古茶园生物多样性调查与保护(KX142022086)、云南省茶学重点实验室开放基金项目(2022YNCX003)

Influence of Organic Planting on Soil Microbial Community Composition and Diversity in Tea Gardens

  • YAN Yuxiao ,
  • ZHOU Dapeng ,
  • YANG Yanfen ,
  • Xie Jin ,
  • LÜ Caiyou ,
  • YANG Guangrong ,
  • WEN Qinshu
Expand
  • 1. College of Tea Science of Yunnan Agricultural University, Kunming 650201, China;
    2. Dehong Prefecture Tea Technology Promotion station, Mangshi 678400, China

Received date: 2024-01-07

  Revised date: 2024-02-20

  Online published: 2024-04-30

摘要

为揭示有机种植对土壤微生物群落组成和多样性的影响,以云南省勐腊县3座代表性古茶山(蛮砖、易武、攸乐)的古茶园、现代茶园、橡胶园、荒地4种类型土壤为研究对象,采用Illumina MiSeq PE300高通量测序技术测定其细菌和真菌群落结构,分析有机种植及种植年限对土壤理化性质、微生物群落结构特征与多样性的影响。结果表明,有机种植可促进土壤有机质积累和氮磷钾养分含量提高。3座茶山土壤细菌共有运算分类单元(Operational taxonomic unit,OTU)数目为381个,其中,易武荒地特有OTU最多(293个),蛮砖橡胶园特有OTU最少(28个);而真菌共有OTU数目仅为24个,蛮砖古茶园特有OTU最多(337个),易武现代茶园特有OTU最少(55个)。细菌的Shannon多样性指数达5.88~6.62,明显高于真菌的2.71~4.30。茶园土壤优势细菌和真菌门与非茶园土壤基本相似,但酸微菌目(Acidimicrobiales)、慢生根瘤菌属(Bradyrhizobium、Varibacter属、黄色杆菌科(Xanthobacteraceae)、硝化螺菌属(Nitrospira)、Bryobacter属、Acidibacter属、浮霉菌科(Planctomycetaceae)等在不同茶山和土地利用方式间的相对丰度差异显著;与荒地和橡胶园相比,茶园土壤真菌群落的毛壳菌科(Chaetomiaceae)、青霉菌属(Penicillium)、镰刀菌属(Fusarium)、木霉属(Trichoderma)、被孢霉属(Mortierella)、伞菌目(Agaricales)和散囊菌纲(Eurotiomycetes)等的相对丰度较高。细菌群落丰度指数Chao1与土壤全氮和全磷呈显著正相关,3座茶山的细菌群落组成较真菌群落更为稳定。除个别茶园土壤外,有机种植下土壤细菌丰度随年限增加而上升,真菌丰度随年限增加先降低后升高,现代茶园和古茶园细菌与真菌的多样性水平则随种植年限增加而下降。

本文引用格式

严钰萧 , 周大鹏 , 杨艳芬 , 谢瑾 , 吕才有 , 杨广容 , 文勤枢 . 有机种植对茶园土壤微生物群落组成与多样性的影响[J]. 茶叶科学, 2024 , 44(2) : 246 -260 . DOI: 10.13305/j.cnki.jts.2024.02.003

Abstract

To reveal the influence of organic planting on the community composition and diversity of soil microbial community, 4 types of soils (ancient tea gardens, modern tea gardens, rubber fields, wastelands) were used as the research objects in 3 representative ancient tea mountains (Manzhuan, Yiwu and Youle) in Mengla County, Yunnan Province. The community composition of bacteria and fungi were identified using Illumina MiSeq PE300 high-throughput sequencing technology. The effects of organic planting and planting years on soil physical and chemical properties, microbial community composition characteristics and diversity were analyzed. The results show that organic planting could promote soil organic matter accumulation and increase the contents of nitrogen, phosphorus and potassium nutrients. The common number of bacteria OTUs in the soils of three tea gardens and non-tea gardens was 381. Among them, Yiwu Wasteland had highest number of unique OTUs (293), while the Rubber Land of Manzhuan had the lowest number of unique OTUs (28). The total number of fungi OTUs was only 24, with the highest number of fungi OTUs unique to Manzhuan ancient tea garden (337) and the lowest number of OTUs unique to Yiwu Modern Tea Garden (55). In addition, The Shannon diversity index of bacteria reached 5.88-6.62, which was significantly higher than that of fungi (2.71-4.30). The dominant bacteria and fungi in tea garden soils were basically similar to those in non-tea garden soil. However, there were significant differences in relative abundance among identified Acidimicrobiales, Bradyrhizobium, Varibacter, Xanthobacteraceae, Nitrospira, Bryobacter, Acidibacter and Planomyceteaceae among different tea mountains and land use modes. Compared with wasteland and rubber land, the relative abundance of Chaetomiaceae, Penicillium, Fusarium, Trichoderma, Mortierella, Agaricales and Eurotiomycetes in tea garden soil fungal communities were significantly higher than those in other soils. The abundance index of bacterial community Chao1 was significantly and positively correlated with soil TN and TP, and the bacterial community composition was more stable than the fungal community composition of the three mountains with ancient tea plants. Except for some tea garden soils, the abundance of soil bacteria increased with the increase of organic planting and planting years, while the abundance of fungi decreased and then increased with the beginning of organic planting. The diversity level of bacteria and fungi in modern and ancient tea gardens decreased with the increase of organic planting and planting years.

参考文献

[1] 江志阳, 高立红, 尹微. 土壤微生物: 可持续农业和环境发展的新维度[J]. 微生物学杂志, 2020, 40(3): 1-7.
Jiang Z Y, Gao L H, Yin W.Soil microorganisms: a new dimension of sustainable agriculture and environmental development[J]. Journal of Microbiology, 2020, 40(3): 1-7.
[2] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008(5): 892-900.
Lin X G, Hu J L.The scientific connotation of soil microbial diversity and its ecological service function[J]. Acta Pedologica Sinica, 2008(5): 892-900.
[3] 顾松松, 胡秋龙, 刘仲华, 等. 不同类型茶园土壤细菌多样性及群落结构研究[J]. 茶叶通讯, 2019, 46(2): 162-169.
Gu S S, Hu Q L, Liu Z H, et al.The study on diversity and community structure of organic, non-polluted and common tea plantations[J]. Journal of Tea Communication, 2019, 46(2): 162-169.
[4] 韩文炎, 王皖蒙, 郭赟, 等. 茶园土壤细菌丰度及其影响因子研究[J]. 茶叶科学, 2013, 33(2): 147-154.
Han W Y, Wang W M, Guo Y, et al.Bacterial abundance of tea garden soils and its influencing factors[J]. Journal of Tea Science, 2013, 33(2): 147-154.
[5] 周才碧, 陈文品. 茶园土壤微生物的研究进展[J]. 中国茶叶, 2014, 36(3): 14-15.
Zhou C B, Chen W P.Research progress of soil microorganisms in tea gardens[J]. China Tea, 2014, 36(3): 14-15.
[6] 王海斌, 陈晓婷, 丁力, 等. 土壤酸度对茶树根际土壤微生物群落多样性影响[J]. 热带作物学报, 2018, 39(3): 448-454.
Wang H B, Chen X T, Ding L, et al.Effect of soil acidity on microbial diversity in rhizospheric soils of tea plants[J]. Chinese Journal of Tropical Crops, 2018, 39(3): 448-454.
[7] 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J]. 生态学杂志, 2013, 32(1): 64-71.
Lin S, Zhuang J Q, Chen T, et al.Microbial diversity in rhizosphere soils of different planting year tea trees: an analysis with phospholipid fatty acid biomarkers[J]. Chinese Journal of Ecology, 2013, 32(1): 64-71.
[8] Li W, Zheng Z C, Li T X, et al.Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of Western Sichuan, China[J]. CATENA, 2013, 133: 198-205.
[9] 姚泽秀, 李永春, 李永夫, 等. 植茶年限对土壤微生物群落结构及多样性的影响[J]. 应用生态学报, 2020, 31(8): 2749-2758.
Yao Z X, Li Y C, Li Y F, et al.Effects of different tea plantation ages on soil microbial community structure and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2749-2758.
[10] Alekseeva T, Alekseev A, Xu R K et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China[J]. Environmental Geochemistry & Health, 2020, 33(2): 137-148.
[11] 陈丽华, 刘兰英, 吕新, 等. 不同种植年限茶树根际土壤微生物数量和肥力之间关系[J]. 福建农业学报, 2019, 34(12): 1433-1439.
Chen L H, Liu L Y, Lü X, et al.Microbial population and fertility of rhizosphere soils at areas of varied tea-planting years[J]. Fujian Journal of Agriculture, 2019, 34(12): 1433-1439.
[12] 汪华. 茶园土壤微生物群落结构对植茶年限、施肥和高温条件的响应研究[D]. 杭州: 浙江大学, 2015.
Wang H.The response of soil microbial structure to cultivating age, fertilization and high temperature in tea orchard [D]. Hangzhou: Zhejiang University, 2015.
[13] 杨广容, 马燕, 蒋宾, 等. 基于16S rDNA测序对茶园土壤细菌群落多样性的研究[J]. 生态学报, 2019, 39(22): 8452-8461.
Yang G R, Ma Y, Jiang, et al. Analysis of the bacterial community and diversity in tea plantation soil via 16S rDNA sequencing[J]. Acta Ecologica Sinica, 2019, 39(22): 8452-8461.
[14] Zhao J, Wu X B, Nie C P, et al.Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE[J]. World Journal of Microbiology and Biotechnology, 2012, 28(5): 1967-1979.
[15] 胡磊, 杨广, 尤民生. 茶园土壤微生物总DNA不同提取方法的比较[J]. 基因组学与应用生物学, 2010, 29(2): 361-368.
Hu L, Yang G, You M S.Comparison of different DNA extraction methods for soil microbes in tea plantations[J]. Genomics and Applied Biology, 2010, 29(2): 361-368.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2005.
Bao S D. Soil Agrochemical Analysis.[M]. 3rd ed. Beijing: China Agriculture Press, 2005.
[17] 李立平, 邢维芹, 成永霞, 等. 华北平原中部典型农区不同土地利用方式下的土壤性质比较[J]. 土壤通报, 2020, 51(6): 1275-1281.
Li L P, Xing W Q, Cheng Y X, et al.Comparison of soil properties under different land use types in the typical farming areas of middle north China plain[J]. Chinese Journal of Soil Science, 2020, 51(6): 1275-1281.
[18] 梁博, 林田苗, 任德智, 等. 土地利用方式对雅江中游土壤理化性质及颗粒分形特征的影响[J]. 土壤, 2018, 50(3): 613-621.
Liang B, Lin T M, Ren D Z, et al.Efects of land use types on soil physicochemical properties and fractal characteristics of soil particles in midde reaches of Yajiang River[J]. Soils, 2018, 50(3): 613-621.
[19] 梁名志, 李友勇, 马伟, 等. 云南古茶园土壤化学成分研究[J]. 西南农业学报, 2010, 23(1): 119-122.
Liang M Z, Li Y Y, Ma W, et al.Study on soil chemical constituents of ancient tea gardens in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(1): 119-122.
[20] 彭萍, 杨水平, 李品武, 等. 植茶对土壤环境效应分析研究[J]. 茶叶科学, 2007, 27(3): 265-270.
Peng P, Yang S P, Li P W, et al.Effects of tea planting on the yellow soil properties in tea garden[J]. Journal of Tea Science, 2007, 27(3): 265-270.
[21] 李倩. 地质背景及土壤养分与崂山绿茶品质研究[D]. 青岛: 青岛农业大学, 2010.
Li Q.Research on geological background and soil nutrients of Laoshan green tea and its ouality [D]. Qingdao: Qingdao Agricultural University, 2010.
[22] Acosta-martinez V, Burow G, Zobeck T M, et al. Soil microbial communities and function in alternative systems to continuous cotton[J]. Soil Science Society of America Journal, 2010, 74(4): 1181-1192.
[23] Tedersoo L, Nilsson R H, Abarenkov K, et al.454 pyrosequencing and sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases[J]. New Phytologist, 2010, 188(1): 291-301.
[24] Alvey S, Yang C H, Burkert A, et al.Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils[J]. Biology & Fertility of Soil, 2003, 37(2): 73-82.
[25] 张丽红, 符建平, 高丽红, 等. 不同蔬菜轮作对日光温室土壤微生物的影响[J]. 中国农学通报, 2010, 26(1): 140-144.
Zhang L H, Fu J P, Gao L H, et al.The effects of different vegetable rotations on soil microorganisms in solar greenhouses[J]. Chinese Agricultural Science Bulletin, 2010, 26(1): 140-144.
[26] Wang S Q, Li T X, Zheng Z C, et al.Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations[J]. Science of The Total Environment, 2019, 654: 1023-1032.
[27] 卢开阳, 张云峰, 贾鳗, 等. 基于16S rRNA序列分析南糯山不同生境茶树根际土壤细菌群落分布多样性[J]. 昆明理工大学学报(自然科学版), 2016, 41(2): 89-95.
Lu K Y, Zhang Y F, Jia M, et al.Bacteria distribution diversity in tea rhizospheric soil from diferent habitats at Nannuo mountain based on 16S rRNA sequence analysis[J]. Journal of Kunming University of Science and Technology (Natural Science), 2016, 41(2): 89-95.
[28] Kanokratana P, Uengwetwanit T, Rattanachomsri U, et al.Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis[J]. Microbial Ecology, 2011, 61(3): 518-528.
[29] 王秀青, 李永梅, 谢瑾, 等. 古茶园和现代茶园土壤养分与微生物数量的研究[J]. 西南大学学报(自然科学版), 2015, 37(10): 43-50.
Wang X Q, Li Y M, Xie J, et al.Study on soil nutrients and quantity of microbial community of ancient tea arboretums and modern tea gardens[J]. Journal of Southwest University (Natural Science Edition), 2015, 37(10): 43-50.
[30] 季凌飞, 倪康, 马立锋, 等. 不同施肥方式对酸性茶园土壤真菌群落的影响[J]. 生态学报, 2018, 38(22): 8158-8166.
Ji L F, Ni K, Ma L F, et al.Effects of different fertilization methods on soil fungal communities in acid tea gardens[J]. Acta Ecologica Sinica, 2018, 38(22): 8158-8166.
[31] 胡雲飞, 张玥, 张彩丽, 等. 茶树根系内生真菌与根际土壤真菌的季节多样性分析[J]. 南京农业大学学报, 2013, 36(3): 41-46.
Hu Y F, Zhang Y, Zhang C L, et al.Seasonal diversity analysis of tea root endophytic fungi and rhizosphere soil fungi[J]. Journal of Nanjing Agricultural University, 2013, 36(3): 41-46.
[32] 袁赛艳, 陈暄, 房婉萍, 等. 茶树修剪物对茶园土壤真菌群落多样性影响研究[J]. 茶叶科学, 2015, 35(3): 255-262.
Yuan S Y, Chen X, Fang W P, et al.Study on the influence of tea pruning materials on the diversity of soil fungal communities in tea gardens[J]. Journal of Tea Science, 2015, 35(3): 255-262.
[33] 郭彦青. 黄土高原退耕还草区土壤微生物群落研究[D]. 杨凌: 西北农林科技大学, 2017.
Guo Y Q.Dynamics of soi microbial communities inrevegetation areas on the Loess Plateau of China [D]. Yangling: Northwest A&F University, 2017.
[34] Puget P, Angers D A, Chenu C.Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry, 1998, 31(1): 55-63.
[35] 张坤, 包维楷, 杨兵, 等. 林下植被对土壤微生物群落组成与结构的影响[J]. 应用与环境生物学报, 2017, 23(6): 1178-1184.
Zhang K, Bao W K, Yang B, et al.The influence of understory vegetation on the composition and structure of soil microbial communities[J]. Journal of Applied and Environmental Biology, 2017, 23(6): 1178-1184.
[36] 刘丽, 徐明恺, 汪思龙, 等. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J]. 生态学报, 2013, 33(15): 4692-4706.
Liu L, Xu M K, Wang S L, et al.Fffect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure[J]. Acta Ecologica Sinica, 2013, 33(15): 4692-4706.
[37] 刘晶, 赵燕, 张巧明, 等. 不同利用方式对豫西黄土丘陵区土壤微生物生物量及群落结构特征的影响[J]. 草业学报, 2016, 25(8): 36-47.
Liu J, Zhao Y, Zhang Q M, et al.Effects of land use on soil microbial biomass and community structure in the loess hill region of west Henan[J]. Acta Prataculturae Sinica, 2016, 25(8): 36-47.
[38] 李鑫, 周冀衡, 贺丹锋, 等. 干旱胁迫下枸溶性钾肥配施对烤烟土壤理化性质、微生物数量及根系生长的影响[J]. 核农学报, 2016, 30(12): 2434-2440.
Li X, Zhou J H, He D F, et al.Effects of citrate soluble potassium fertilizer on soil physicochemical properties of flue-cured tobacco, microbial quantity and root growth under drought stress[J]. Journal of Nuclear Agriculture, 2016, 30(12): 2434-2440.
文章导航

/