欢迎访问《茶叶科学》,今天是
研究报告

茶树炭疽病菌拮抗链霉菌的筛选及其抑菌特性研究

  • 张玉丹 ,
  • 谭琳 ,
  • 刘仲华 ,
  • 肖敦根 ,
  • 邓玉莲 ,
  • 李桂花 ,
  • 黄虹 ,
  • 杨学宇 ,
  • 胡秋龙
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.湖南农业大学园艺学院,湖南 长沙 410128;
    3.湖南农业大学植物保护学院,湖南 长沙 410128;
    4.湖南中茶茶业有限公司,湖南 长沙 410218
张玉丹,女,硕士研究生,主要从事茶树病害及其生物防治研究。

收稿日期: 2023-11-18

  修回日期: 2023-12-24

  网络出版日期: 2024-04-30

基金资助

湖南省重点研发计划项目(2022NK2051)、湖南省科技创新重大项目(2021NK1020)、国家重点研发计划项目(2022YFD16000803-6)

Identification of Antagonistic Streptomycetes Against Anthracnose Pathogen of Tea Plants and Determination of Their Inhibitory Properties

  • ZHANG Yudan ,
  • TAN Lin ,
  • LIU Zhonghua ,
  • XIAO Dungen ,
  • DENG Yulian ,
  • LI Guihua ,
  • HUANG Hong ,
  • YANG Xueyu ,
  • HU Qiulong
Expand
  • 1. Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
    3. College of Plant Protection, Hunan Agricultural University, Changsha 410128, China;
    4. China Tea (Hunan) Co. LTD., Changsha 410128, China

Received date: 2023-11-18

  Revised date: 2023-12-24

  Online published: 2024-04-30

摘要

茶炭疽病菌刺盘孢菌(Colletotrichum camelliae)是引起茶树炭疽病的重要致病菌,为获得对C. camelliae具有拮抗作用的链霉菌,采用稀释涂布法和平板对峙法从茶园生境中分离筛选出对其具有明显拮抗作用的链霉菌菌株,并结合形态学观察、生理生化特征和16 S rRNA基因序列分析对其进行种属鉴定;开展基于链霉菌菌株的抗菌谱测定、茶炭疽病菌菌丝生长抑制试验和孢子萌发抑制试验;通过菌丝生长速率法测定其无菌发酵滤液对茶炭疽病菌的抑菌活性及其抑菌活性稳定性,并测定其产胞外降解酶能力、抗菌物质合成基因、挥发性与非挥发性代谢物抑菌活性。结果表明,筛选获得一株对茶炭疽病菌C. camelliae具有良好抑菌效果的菌株XS-4,对茶炭疽病菌的平板抑制效果为76.42%;结合形态学观察、生理生化特征,以及16 S rRNA基因序列分析,将菌株XS-4鉴定为多产色链霉菌(Streptomyces polychromogenes);菌株XS-4对其他8种植物病原菌均具有较好的抑菌效果,抗菌性能具有广谱性。扫描电镜结果表明,菌株XS-4能抑制茶炭疽病菌菌丝生长。孢子萌发抑制试验发现,拮抗菌XS-4发酵液能抑制茶炭疽病菌的孢子萌发,抑制率为62.48%;菌株XS-4的最佳发酵培养基为KMB培养基,在KMB培养基中培养7 d所产生的抑菌活性物质对茶炭疽病菌的抑菌效果最好;其无菌发酵滤液对温度、酸碱度、紫外照射、蛋白酶均具有较好的稳定性;菌株XS-4的非挥发性代谢物对茶炭疽病菌的抑菌活性较好,抑菌率达81.92%;菌株XS-4具有产生淀粉水解酶、蛋白酶、β-1,3-葡聚糖酶、纤维素酶的能力;菌株XS-4具有产生抗菌物质的pks-Ⅰpks-Ⅱ基因。综上所述,菌株XS-4在茶树炭疽病生物防治方面具有巨大的应用潜力。

本文引用格式

张玉丹 , 谭琳 , 刘仲华 , 肖敦根 , 邓玉莲 , 李桂花 , 黄虹 , 杨学宇 , 胡秋龙 . 茶树炭疽病菌拮抗链霉菌的筛选及其抑菌特性研究[J]. 茶叶科学, 2024 , 44(2) : 283 -298 . DOI: 10.13305/j.cnki.jts.2024.02.008

Abstract

Colletotrichum camelliae is an important pathogen causing anthracnose of tea plants. In order to obtain Streptomyces strains with better antagonistic effect on C. camelliae, the dilution coating method and plate standoff method were used to isolate and screen Streptomyces strains from the habitat of tea plantations. Morphological observation, physiological and biochemical characteristics and 16 S rRNA gene sequence analysis were combined to identify their species. Antimicrobial spectrum determination, mycelial growth inhibition test and spore germination inhibition test of C. camelliae were carried out for the isolated strains. The antifungal activities and stabilities of aseptic fermentation filtrate of the isolated strains against C. camelliae were determined by using the mycelial growth rate method. The extracellular enzyme-producing capacity, antimicrobial substance synthesis genes, volatile and non-volatile metabolite antifungal activity of the isolated strains were also determined. The results show that a strain XS-4 with better inhibitory effect on tea anthracnose pathogen was obtained and the plate inhibition effect on tea anthracnose pathogen was 76.42%. The strain XS-4 was identified as Streptomyces polychromogenes, which had good inhibitory effect on eight other plant pathogens and the antifungal properties have a broad spectrum. Scanning electron microscopy results show that the strain XS-4 could inhibit the growth of mycelium of tea anthracnose pathogen, and the mycelium was tightly entangled with each other and deformed. The spore germination inhibition test shows that the fermentation solution of strain XS-4 could inhibit the spore germination of C. camelliae, and the inhibition rate was 62.48%. The best fermentation medium for strain XS-4 was KMB medium, and the inhibitory active substance produced by 7 d incubation in KMB medium had the best inhibitory effect on tea anthracnose, the aseptic fermentation filtrate of strain XS-4 had a better stability to temperature, acid and alkali, ultraviolet, and protease. The non-volatile metabolites of strain XS-4 show better antifungal activity against tea anthracnose pathogen with aninhibition rate of 81.92%. The strain XS-4 has the ability to produce amylase, protease, β-1,3-glucanase, and cellulase. The pks-Ⅰ and pks-Ⅱ genes of strain XS-4 were associated with the production of antimicrobial substances. In conclusion, the strain XS-4 has a great potential for application in the biocontrol of anthracnose in tea plants.

参考文献

[1] 王玉春, 郝心愿, 黄玉婷, 等. 中国主要茶区茶树炭疽菌系统发育学[J]. 中国农业科学, 2015, 48(24): 4924-4935.
Wang Y C, Hao X Y, Huang Y T, et al Phylogenetic Study of Colletotrichum Species Associated with Camellia sinensis from the major tea areas in China[J]. Scientia Agricultura Sinica, 2015, 48(24): 4924-4935.
[2] 刘威, 袁丁, 尹鹏, 等. 茶树炭疽病的研究进展[J]. 热带农业科学, 2016, 36(11): 20-26.
Liu W, Yuan D, Yin P, et al.Research progress on anthracnose of tea plant[J]. Chinese Journal of Tropical Agriculture, 2016, 36(11): 20-26.
[3] 刘荣, 姚玉仙, 周爽爽, 等. 茶炭疽病的症状识别与防治研究[J]. 福建茶叶, 2022, 44(2): 24-26.
Liu R, Yao Y X, Zhou S S, et al.Identification and control of Gloeosporium theae-sinensis Miyake[J]. Tea in Fujian, 2022, 44(2): 24-26.
[4] 孙钦玉, 张家侠, 夏先江, 等. 茶炭疽病生物防治研究现状与展望[J]. 茶业通报, 2017, 39(2): 69-72.
Sun Q Y, Zhang J X, Xia X J, et al.Status and prospects of research on biological control of tea anthracnose[J]. Journal of Tea Business, 2017, 39(2): 69-72.
[5] 刘一贤, 施玉萍, 戴利铭, 等. 橡胶褐根病拮抗放线菌17-7的筛选、鉴定及发酵条件优化[J]. 微生物学通报, 2020, 47(1): 118-129.
Li Y X, Shi Y P, Dai L M, et al.Screening, identification and fermentation optimization of an antimicrobial actinomycete strain 17-7 to Phellinus noxius[J]. Microbiology China, 2020, 47(1): 118-129.
[6] 刘金秀, 马正, 申屠旭萍, 等. 黄瓜枯萎病拮抗放线菌筛选及其生防作用鉴定[J]. 园艺学报, 2012, 39(6): 1123-1130.
Liu J X, Ma Z, Shentu X P, et al.Isolation and identification of antagonistic actinomycetes and their application in the biocontrol of Fusarium oxysporum f. sp. cucumerinum[J]. Acta Horticulturae Sinica, 2012, 39(6): 1123-1130.
[7] 刘雨芹, 杨莹, 魏有海, 等. 樱桃链格孢菌叶斑病拮抗链霉菌的筛选与鉴定[J]. 青海大学学报, 2022, 40(2): 40-47.
Liu Y Q, Yang Y, Wei Y H, et al.Screening and identification of antagonistic Streptomyces sp. against Alternaria alternata leaf spot of Prunus avium[J]. Journal of Qinghai University, 2022, 40(2): 40-47.
[8] Wadetwar R N, Patil A T.Production of antibiotic from actinomycetes isolated from Nagpur region and optimization of parameters to increase the yield[J]. Pharmaceutical Sciences and Research, 2013, 4(8): 3094-3098.
[9] Amano S I, Morota T, Kano Y K, et al.Promomycin, a polyether promoting antibiotic production in Streptomyces spp.[J]. Antibiotics, 2010(63): 486-491.
[10] Smaoui S, Mathieu F, Elleuch L, et al.Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain[J]. World Journal of Microbiol Biotechnology, 2012(28): 793-804.
[11] 鲁妍璇, 曹毅, 李博雅, 等. 利迪链霉菌K2对灰霉病菌的抑菌效果及抑菌物质鉴定[J]. 微生物学报, 2023, 63(5): 1991-2006.
Lu Y X, Cao Y, Li B Y, et al.Inhibition of Streptomyces lydicus K2 on Botrytis cinerea and identification of its inhibitory substances[J]. Acta Microbiologica Sinica, 2023, 63(5): 1991-2006.
[12] 潘洁明, 陈雪玉, 贝永建, 等. 八角炭疽病拮抗放线菌RX2-2的分离鉴定及其生物活性评价[J]. 微生物学通报, 2022, 49(3): 991-1003.
Pan J M, Chen X Y, Bei Y J, et al.Isolation identification, and bioactivity evaluation of an actinomycetes strain RX2-2 against star anise anthracnose[J]. Microbiology China, 2022, 49(3): 991-1003.
[13] 王津. 一株具有抑菌活性的放线菌JN18的鉴定及发酵条件优化[D]. 南昌: 江西农业大学, 2021.
Wang J.Identification of an actinomycete JN18 with antibacterial activity and optimization of fermentation conditions [D]. Nanchang: Jiangxi Agricultural University, 2021.
[14] 范丽霞. 放线菌Z331-A的鉴定、培养条件优化及发酵液活性研究[D]. 海口: 海南大学, 2018.
Fan L X.Identification of actinomycetes Z331-A and optimization of fermentation conditions and fermentation broth activity study [D]. Haikou: Hainan University, 2018.
[15] 张强, 张艳茹, 霍云凤, 等. 禾谷镰刀菌拮抗菌21-6的鉴定及其抑菌活性测定[J]. 微生物学通报, 2022, 49(10): 4144-4157.
Zhang Q, Zhang Y R, Huo Y F, et al.Identification and activity of Streptomyces sp. 21-6 against Fusarium graminearum[J]. Microbiology China, 2022, 49(10): 4144-4157.
[16] 文娜. 拮抗轮枝镰刀菌的放线菌筛选及其活性代谢产物的初步研究[D]. 兰州: 西北师范大学, 2020.
Wen N.Screening of actinomycetes resistant to Fusarium verticillioide and preliminary study on their active metabolites [D] Lanzhou: Northwest Normal University, 2020.
[17] 宋微. 油菜菌核病拮抗放线菌的筛选及Kribbella monticol多相分类鉴定[D]. 哈尔滨: 东北农业大学, 2019.
Song W.Screening of antagonisticm actinomycetes against Sclerotinia Sclerotiorum and polyphasic taxonomy identification of Kribbella monticola [D] Haerbin: Dongbei Agricultural University, 2019.
[18] 孙迅. 烟草黑胫病菌生防放线菌发酵条件的优化及定殖动态[D]. 合肥: 安徽农业大学, 2023.
Sun X.Optimization of fermentation conditions and colonization dynamics of biocontrol actinomycetes against Phytophthora nicotianae [D]. Hefei: Anhui Agricultural University, 2023.
[19] 黄华毅, 田呈明, 梁小文. 克里本类芽孢杆菌TRCC 82001抑菌活性分析及发酵条件优化[J]. 西北林学院学报, 2022, 37(6): 153-160.
Huang H Y, Tian C M, Liang X W, et al.Antifungal activity of Paenibacillus kribbensis TRCC 82001 and optimization of fermentation conditions[J]. Journal of Northwest Forestry University, 2022, 37(6): 153-160.
[20] 阮宏椿, 石妞妞, 杜宜新, 等. 水稻稻瘟病拮抗稀有放线菌的筛选及防治效果[J]. 中国生物防治学报, 2021, 37(3): 538-546.
Ruan H C, Shi N N, Du Y X, et al.Screening and control effect of rare antagonistic actinomycetes against rice blast[J]. Chinese Journal of Biological Control, 2021, 37(3): 538-546.
[21] 方中达. 植病研究方法[M]. 3版. 北京: 中国农业出版社, 1998.
Fang Z D.Phytophthora research methods [M]. 3rd ed. Beijing: Chinese Agricultural Press, 1998.
[22] 中国科学院微生物研究所放线菌分类组. 链霉菌鉴定手册[M]. 北京: 科学出版社, 1975.
Actinomycetes Taxonomic Group, Institute of Microbiology, Chinese Academy of Sciences. Manual for identification Streptomyces [M]. Beijing: Science Press, 1975.
[23] 孙天宇. 抗水稻恶苗病放线菌的分离鉴定及功能研究[D]. 哈尔滨: 东北农业大学, 2020.
Sun T Y.Isolation, identification and functional study of actinobacteria resistant to rice bakanae disease [D]. Haerbin: Dongbei Agricultural University, 2020.
[24] 彭成慧. 云南香蒲内生放线菌的分离鉴定及抗番茄青枯病活性研究[D]. 哈尔滨: 东北农业大学, 2021.
Peng C H.Isolation and identification of endophytic actinobacteria from the root of cattail in Yunnan Province and their antibacterial activity against Ralstonia solanacearum [D]. Haerbin: Dongbei Agricultural University, 2021.
[25] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184-193.
Lan C Z, Gan L, Dai Y L, et al.Screening, Identification and biocontrol effect of antagonistic strain against Fusarium oxysporum f. sp. cucumerinum[J]. Chinese Journal of Biological Control, 2023, 39(1): 184-193.
[26] 朱咏珊, 罗晓欣, 梁浩然, 等. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100.
Zhu Y S, Luo X X, Liang H R, et al.Identification of a tea rhizosphere bacterium and its biocontrol of tea anthracnose disease[J]. Journal of Tea Science, 2022, 42(1): 87-100.
[27] 张丽荣, 李鹏, 康萍芝, 等. 压砂西瓜枯萎病生防木霉菌筛选及其拮抗机制研究[J]. 河南农业科学, 2018, 47(5): 75-78, 84.
Zhang L R, Li P, Kang P Z, et al.Screening and antagonistic mechanism analysis of Trichoderma spp. against fusarium wilt of watermelon in gravel-mulched land[J]. Journal of Henan Agricultural Sciences, 2018, 47(5): 75-78, 84.
[28] 李小杰, 李成军, 姚晨虓, 等. 拮抗烟草疫霉菌的木霉菌株筛选鉴定及防病促生作用研究[J]. 中国烟草科学, 2020, 41(3): 65-70.
Li X J, Li C J, Yao C X, et al.Screening, identification of antagonistic Trichoderma spp. against tobacco black shank and its growth promotion effect on tobacco[J]. Chinese Tobacco Science, 2020, 41(3): 65-70.
[29] Huang H Y, Tian C M, Huang Y H, et al.Biological control of poplar anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. &. Sacc[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1-9.
[30] Essghaiere B, Fardeauf M L, Cayol J L, et al.Biological control of grey mould in strawberry fruits by halophilic bacteria[J]. Journal of Applied Microbiology, 2009, 106: 833-846.
[31] 张斯颖, 陈宇丰, 骆焱平, 等. 丛生盔形珊瑚共附生放线菌NLG-3的抑菌活性及鉴定[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10): 97-105.
Zhang S Y, Chen Y F, Luo Y P, et al.Antibacterial activity and identification of epiphytic actinomycete NLG-3 from galaxea facicularis[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(10): 97-105
[32] 卢彩鸽, 董红平, 张殿朋, 等. 解淀粉芽胞杆菌 MH71 摇瓶发酵培养基及发酵条件优化[J]. 中国生物防治学报, 2015, 31(3): 369-377.
Lu C G, Dong H P, Zhang D P, et al.Optimization of fermentation medium components and cultural conditions for Bacillus amyloliquefaciens MH71 in flask[J]. Chinese Journal of Biological Control, 2015, 31(3): 369-377.
[33] 瞿佳, 门欣, 陈锐, 等. 核桃黑斑病拮抗放线菌WMF106的筛选、鉴定及防效[J]. 微生物学通报, 2021, 48(10): 3621-3631.
Qu J, Men X, Chen R, et al.Screening, identification and biocontrol effect of antagonistic actinomycete WMF106 against walnut blight[J]. Microbiology China, 2021, 48(10): 3621-3631.
[34] Yang Y C, Guan Z B, Ding Y R, et al.Fermentation optimization, cloning and sequence analysis of the laccase gene from Shiraia sp. SUPER-H168[J]. Annals of Microbiology, 2015, 65(1): 575-583.
[35] 郭春燕. 拮抗放线菌FX-H-2的鉴定、发酵条件优化及生防效果评价[D]. 泰安: 山东农业大学, 2018.
Guo C Y.Identification and fermentation condition optimization of antagonistic actinomycetes FX-H-2 and evaluation of its biocontrol effect [D]. Tai'an: Shandong Agricultural University, 2021.
[36] 瞿佳, 孙晓宇, 陈锐, 等. 核桃黑斑病拮抗放线菌WMF106发酵条件优化和抑菌物质稳定性[J]. 微生物学通报, 2022, 49(1): 88-100.
Qu J, Sun X Y, Chen R, et al.Optimization of fermentation conditions and stability evaluation of antimicrobial active substance for antagonistic actinomycete WMF106 against walnut blight[J]. Microbiology China, 2022, 49(1): 88-100.
[37] 赵娟, 贾卫国, 刘伟成, 等. 草莓灰霉病菌拮抗放线菌的筛选及活性测定[J]. 北方园艺, 2018(4): 59-65.
Zhao J, Jia W G, Liu W C, et al.Screening antagonistic actinomycetes against strawberry grey mould and activity determination of fermentation brotu[J]. Northern Horticulture, 2018(4): 59-65.
[38] 于妍华, 薛泉宏, 唐明. 西洋参和人参病原真菌菌体对放线菌2种水解酶的诱导[J]. 西北农林科技大学学报(自然科学版), 2011, 39(7): 110-116.
Yu Y H, Xue Q H, Tang M, et al.Inductive effects of fungal pathogens of American Ginseng and Ginseng on chitinase and cellulase of antigonistic actinomycetes[J]. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(7): 110-116
[39] 孙煜炜, 蒋林, 李蕾, 等. 海绵共附生菌Streptomyces olivaceus LHW2444的分离鉴定及其抗青枯菌活性代谢产物研究[J]. 中国海洋药物, 2023, 42(4): 1-7.
Sun Y W, Jiang L, Li L, et al.Marine sponge symbiotic Streptomyces olivaceus LHW2444: isolation, identification, and active metabolites against Ralstonia solanacearum[J]. Chinese Journal of Marine Drugs, 2023, 42(4): 1-7.
[40] 王浩, 刘宁, 黄英. 放线菌模块型聚酮合酶的系统发育组学分析及其在聚酮类化合物筛选中的应用[J]. 微生物学报, 2010, 50(10): 1293-1304.
Wang H, Liu N, Huang Y, et al.Phylogenomic analysis of modular polyketide synthases in actinomycetes and its application in product screening[J]. Acta Microbiologica Sinica, 2010, 50(10): 1293-1304
[41] 赖珍珠. 两株链霉菌次级代谢产物研究[D]. 广州: 广州医科大学, 2017.
Lai Z Z.Studies on the secondary metabolites encoded by two Streptomyces St. [D]. Guangzhou: Guangzhou Medical University, 2017.
[42] 李宇, 赖珍珠, 李佳岭, 等. 放线菌Streptomyces nojiriensis SCSIO m34-1吩嗪生物碱类次级代谢产物的研究[J]. 天然产物研究与开发, 2018, 30(10): 1663-1668, 1705.
L Y, Lai Z Z, Li J L, et al. Phenazine alkaloid secondary metabolites from actinomycete Streptomyces nojiriensis SCSIO m34-1[J]. Natural Product Research and Development, 2018, 30(10): 1663-1668, 1705.
[43] 杨媚, 舒灿伟, 周而勋, 等. 卡特拉链霉菌NB20及其培养方法和应用: CN102433281B [P].2013-05-01.
Yang M, Shu C W, Zhou E X, et al. Streptomyceskatra NB20 and its culture method and application: CN102433281B [P].2013-05-01.
文章导航

/