欢迎访问《茶叶科学》,今天是
研究报告

贝莱斯芽孢杆菌YJK1鉴定及其对茶炭疽病的拮抗效果

  • 唐朝阳 ,
  • 孔丽娅 ,
  • 胡骞 ,
  • 宋秋瑾 ,
  • 何鲁钱 ,
  • 楼骏 ,
  • 王占旗 ,
  • 何艳 ,
  • 张立钦 ,
  • 闵莉静
展开
  • 1.湖州师范学院生命科学学院,浙江省媒介生物学与病原控制重点实验室,浙江 湖州 313000;
    2.浙江中一检测研究院股份有限公司,浙江 杭州 310000;
    3.浙江大学土水资源与环境研究所,浙江 杭州 310000
唐朝阳,男,博士,主要从事茶树病虫害方面的研究。

收稿日期: 2024-02-11

  修回日期: 2024-05-14

  网络出版日期: 2024-07-08

基金资助

国家自然科学基金(42107019)、国家级大学生创新创业训练计划项目(202310347056)、湖州市自然科学资金项目(2022YZ11)、浙江省教育厅研究项目(Y202248499)、浙江省重点研发计划尖兵项目(2023C02004)

Antagonistic Activity and Utilization of Bacillus velezensis Strain YJK1 as A Biocontrol Agent Against Anthracnose on Camellia sinensis

  • TANG Zhaoyang ,
  • KONG Liya ,
  • HU Qian ,
  • SONG Qiujin ,
  • HE Luqian ,
  • LOU Jun ,
  • WANG Zhanqi ,
  • HE Yan ,
  • ZHANG Liqin ,
  • MIN Lijing
Expand
  • 1. Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
    2. Zhejiang Zhongyi Testing Institute Co., Ltd., Hangzhou 310000, China;
    3. Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China

Received date: 2024-02-11

  Revised date: 2024-05-14

  Online published: 2024-07-08

摘要

茶树炭疽病的发生严重威胁着茶产业的可持续发展,传统的化学农药防治方法存在农药残留和环境污染等问题。以筛选到的贝莱斯芽孢杆菌(Bacillus velezensis)YJK1生防新菌株为研究对象,探究了YJK1菌株对茶树病害的生物防治效果。平板拮抗试验发现YJK1菌株对茶树炭疽菌(Colletotrichum camelliae)、果生炭疽菌(Colletotrichum fructicola)、藤黑镰刀菌(Fusarium fujikuroi)等多种茶树真菌病害具有明显的抑制效果。YJK1发酵稀释液对茶树炭疽菌和果生炭疽菌孢子具有明显的抑制作用。喷施贝莱斯芽孢杆菌YJK1发酵液对白叶1号和黄金芽离体叶片的炭疽病病菌生长抑制效果明显,先喷施YJK1菌株发酵液再接种茶树炭疽菌,病菌生长抑制率为78.1%,同时喷施发酵液和接种炭疽菌,抑制率为61.8%。结果表明,YJK1菌株对茶树炭疽病“防”和“治”效果均显著。YJK1发酵液对多种真菌具有广谱性,稳定性测试结果说明发酵液中活性物质在80 ℃以下保持稳定;紫外处理60 min后抑制率仍高于50%;经不同pH处理后,当pH为5~11时,抑制率无显著区别。综上,贝莱斯芽孢杆菌YJK1在茶树绿色农业生产领域具有较好的应用潜力。

本文引用格式

唐朝阳 , 孔丽娅 , 胡骞 , 宋秋瑾 , 何鲁钱 , 楼骏 , 王占旗 , 何艳 , 张立钦 , 闵莉静 . 贝莱斯芽孢杆菌YJK1鉴定及其对茶炭疽病的拮抗效果[J]. 茶叶科学, 2024 , 44(3) : 443 -452 . DOI: 10.13305/j.cnki.jts.2024.03.005

Abstract

The tea industry is one of China's important agricultural economic resources. However, widespread outbreaks of anthracnose on Camellia sinensis pose a significant threat to the sustainability of the tea industry. Conventional approaches based on chemical pesticides face inherent challenges, including pesticide residue accumulation and environmental pollution. In this study, the biological control effect of Bacillus velezensis YJK1 on tea tree diseases was evaluated. The results demonstrat that the YJK1 isolate exhibited robust antagonistic activity against fungal diseases affecting tea trees, particularly against pathogens such as Colletotrichum camelliae, Colletotrichum fructicola and Fusarium fujikuroi. YJK1 fermentation diluent has a significant inhibitory effect on the spores of C. camelliae and C. fructicola. The inhibitory effects of YJK1 fermented liquid on the diameter of C. camelliae were evaluated with the detached tea leaves. YJK1 fermented liquid effectively prevented tea tree anthracnose with 78.1% control when applied 24 h before C. camelliae inoculation and 61.8% during simultaneous inoculation. However, its efficacy was limited (post-inoculation). The YJK1 fermentation broth has a broad-spectrum of activity against various fungi. The antagonistic activity of the fermented liquid was stable below 80 ℃. After 60 min of UV treatment, the inhibition rate was still above 50%. And after treatment with different pH values, there was no significant difference in the inhibition rate within the pH range of 5-11. These findings suggest that B. velezensis YJK1 is a promising biocontrol agent for the management of tea plant diseases.

参考文献

[1] 王玉春, 刘守安, 卢秦华, 等. 中国茶树炭疽菌属病害研究进展及展望[J]. 植物保护学报, 2019, 46(5): 954-963.
Wang Y C, Liu S A, Lu Q H, et al.Research progress and prospects of Colletotrichum species causing tea plant diseases in China[J]. Journal of Plant Protection, 2019, 46(5): 954-963.
[2] 李欣, 黄月玲, 韦俊峰. 布央侗寨茶产业助推乡村振兴的路径与模式[J]. 茶叶通讯, 2019, 46(1): 125-128.
Li X, Huang Y L, Wei J F.The path and model of Buyang’s tea industry promoting rural revitalization[J]. Journal of Tea Communication, 2019, 46(1): 125-128.
[3] 贡长怡, 刘姣姣, 邓强, 等. 茶树炭疽病病原菌鉴定及其致病性分析[J]. 园艺学报, 2022, 49(5): 1092-1101.
Gong C Y, Liu J J, Deng Q, et al.Identification and pathogenicity of Colletotrichum species causing anthracnose on Camellia sinensis[J]. Acta Horticulturae Sinica, 2022, 49(5): 1092-1101.
[4] 徐小文, 王义勋, 张子一, 等. 山茶炭疽菌CcSnf1基因参与调控山茶炭疽菌的生长发育和致病力[J]. 植物病理学报, 2022, 52(6): 927-939.
Xu X W, Wang Y X, Zhang Z Y, et al.CcSnf1 is involved in regulating development and pathogenicity in Colletotrichum camelliae[J]. Acta Phytopathologica Sinica, 2022, 52(6): 927-939.
[5] Cannon P F, Damm U, Johnston P R, et al.Colletotrichum: current status and future directions[J]. Studies in Mycology, 2012, 73(1): 181-213.
[6] 徐淑琴, 贺曦, 龚紫凤, 等. 贝莱斯芽孢杆菌的生物学特性及其农业应用现状[J]. 饲料研究, 2022, 45(9): 143-147.
Xu S Q, He X, Gong Z F, et al.Biological characteristics of Bacillus velezensis and its agricultural application[J]. Feed Research, 2022, 45(9): 143-147.
[7] Baptista J P, Teixeira G M, De Jesus M L, et al. Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489[J]. Scientific Reports, 2022, 12(1): 17401. doi: 10.1038/s41598-022-22380-0.
[8] Tang T, Wang F, Huang H, et al.Antipathogenic activities of volatile organic compounds produced by Bacillus velezensis LT1 against Sclerotium rolfsii LC1, the pathogen of southern blight in Coptis chinensis[J]. Journal of Agricultural and Food Chemistry, 2024, 72(18): 10282-10294.
[9] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学, 2019, 52(11): 1908-1917.
Sha Y X, Sui S T, Zeng Q C, et al.Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases[J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[10] Martínez-Raudales I, De La Cruz-Rodríguez Y, Vega-Arreguín J, et al. Draft genome sequence of Bacillus velezensis 3a-25b, a strain with biocontrol activity against fungal and oomycete root plant phytopathogens, isolated from grassland soil[J]. Genome Announcements, 2017, 5(39): e01021-17. doi: 10.1128/genomea.01021-17.
[11] 张玉丹, 谭琳, 刘仲华, 等. 茶树炭疽病菌拮抗链霉菌的筛选及其抑菌特性研究[J]. 茶叶科学, 2024, 44(2): 283-298.
Zhang Y D, Tan L, Liu Z H, et al.Identification of antagonistic Streptomycetes against anthracnose pathogen of tea plants and determination of their inhibitory properties[J]. Journal of Tea Science, 2024, 44(2): 283-298.
[12] 尉婧, 王碧香, 李诗瑶, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)的研究进展[J]. 天津农学院学报, 2022, 29(4): 86-91.
Wei J, Wang B X, Li S Y, et al.Advances in the study of Bacillus velezensis[J]. Journal of Tianjin Agricultural College, 2022, 29(4): 86-91.
[13] 东秀株, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 162.
Dong X Z, Cai M Y.Manual of determinative bacteriology [M]. Beijing: Science Press, 2001: 162.
[14] Holt J G.Bergey’s manual of determinative bacteriology[M]. 9th ed. Baltimore: Lippincott Williams & Wilkins, 1994.
[15] Tamura K, Stecher G, Kumar S.MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
[16] Saitou N, Nei M.The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
[17] Tang Z Y, Zhu J, Song Q J, et al.Identification and pathogenicity of Fusarium spp. associated with tea wilt in Zhejiang Province, China[J]. BMC Microbiology, 2024, 24(1): 38. doi: 10.1186/s12866-023-03174-4.
[18] 赵金, 高子晴, 丛丽娜. 贝莱斯芽孢杆菌BA-300的鉴定、发酵条件优化及应用[J]. 大连工业大学学报, 2023, 42(3): 176-180.
Zhao J, Gao Z Q, Cong L N.Identification, optimal fermentation conditions and application of Bacillus velezensis BA-300[J]. Journal of Dalian Polytechnic University, 2023, 42(3): 176-180.
[19] SunY, Yang N, Li S, et al. Mechanism of oxalate decarboxylase Oxd_S12 from Bacillus velezensis BvZ45-1 in defense against cotton verticillium wilt[J]. Journal of Experimental Botany, 2024, 75(11): 3500-3520.
[20] 陶永梅, 潘洪吉, 黄健, 等. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J]. 中国植保导刊, 2019, 39(9): 26-33.
Tao Y M, Pan H J, Huang J, et al.Research and application of a novel bio-control microbial factor Bacillus velezensis[J]. China Plant Protection, 2019, 39(9): 26-33.
[21] Trinh T H T, Wang S L, Nguyen V B, et al. A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 2019, 45(11): 5309-5323.
[22] Chowdhury S P, Uhl J, Grosch R, et al.Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Molecular Plant-Microbe Interactions, 2015, 28(9): 984-995.
文章导航

/