欢迎访问《茶叶科学》,今天是
研究报告

茶树接种AM真菌在干旱胁迫下的生理响应

  • 鲁薇 ,
  • 邬晓龙 ,
  • 胡贤春 ,
  • 郝勇 ,
  • 刘春艳
展开
  • 1.长江大学园艺园林学院,湖北 荆州 434025;
    2.长江大学城市建设学院,湖北 荆州 434023
鲁薇,女,硕士研究生,主要从事茶树栽培生理生态研究。

收稿日期: 2024-06-07

  修回日期: 2024-07-29

  网络出版日期: 2024-11-08

基金资助

国家自然科学基金(32102315)、茶树生物学与利用国家重点实验室开放基金(SKLTOF20200122)

Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress

  • LU Wei ,
  • WU Xiaolong ,
  • HU Xianchun ,
  • HAO Yong ,
  • LIU Chunyan
Expand
  • 1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China;
    2. College of Urban Construction, Yangtze University, Jingzhou, 434023, China

Received date: 2024-06-07

  Revised date: 2024-07-29

  Online published: 2024-11-08

摘要

为探究干旱胁迫下丛枝菌根(Arbuscular mycorrhizal,AM)真菌对茶树生长及生理的作用机理,以福鼎大白茶(Camellia sinensis cv. ‘Fuding Dabaicha')茶树实生苗为试验材料,采用温室盆栽法,在正常水分和干旱胁迫下分别接种或不接种AM真菌幼套近明球囊霉(Claroideoglomus etunicatum),探究AM真菌在不同干旱胁迫时长(4周、6周、8周)下对茶树实生苗生长、光合、渗透调节及气孔开度等的生理响应。结果显示,在两种不同的水分条件下,接种AM真菌处理均显著促进了茶树生长,增加了地上部和地下部生物量,改善了根系构型,与不接种AM真菌相比,茶树根系总长度、二级侧根和三级侧根的数量、叶片渗透势分别增加了20.00%~38.77%、48.90%~163.33%、60.00%~442.86%、29.77%~41.24%,降低了干旱胁迫下茶树叶片气孔密度和相对电导率,与不接种AM真菌相比分别降低了16.00%~42.37%、2.21%~6.67%,且在干旱胁迫下的效果更为显著。干旱胁迫显著抑制了AM真菌对茶树根系的侵染和茶树的生长,表现为抑制了茶树根系构型的建立,降低了叶片叶绿素含量、最大光量子效应(QY_max)、叶片相对含水量(RWC)、气孔开度及渗透势等。接种AM真菌能显著缓解这种抑制效应,改善茶树对干旱胁迫的生理响应,从而促进茶树生长。研究表明,AM真菌可通过优化茶苗根系构型,提高茶苗叶片的保水和光合能力,调节气孔及渗透平衡,从而促进植株对水分和养分的吸收,缓解干旱对茶树的损伤,提高茶树实生苗的抗旱能力,且随着干旱时间的延长AM真菌的促进效果更为显著。

本文引用格式

鲁薇 , 邬晓龙 , 胡贤春 , 郝勇 , 刘春艳 . 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024 , 44(5) : 718 -734 . DOI: 10.13305/j.cnki.jts.2024.05.002

Abstract

To explore the mechanism of arbuscular mycorrhizal (AM) fungi on the growth and physiological characteristics of tea plants under drought stress, tea cultivar ‘Fuding Dabaicha' was used as experimental material to inoculate with or without (Claroideoglomus etunicatum) under well-watered and drought stress. Plant growth performance, photosynthesis, osmotic regulation and stomatal aperture were determined to investigate the effect of AMF on tea seedlings under different duration of DS (4 weeks, 6 weeks and 8 weeks). The results show that under well-watered and drought stress conditions, AMF inoculation significantly promoted plant growth performance, increased the shoot and root biomass, improved the root system architecture, in particularly increased total root length, secondary and tertiary lateral root numbers, and leaf osmotic potential by 20.00%-38.77%, 48.90%-163.33%, 60.00%-442.86%, 29.77%-41.24%, decreased the stomatal density and relative conductance under drought stress by 16.00%-42.37% and 2.21%-6.67% respectively. The effects were more significant under drought stress. Whereas, drought stress significantly inhibited the root AMF colonization and plant growth, as evidenced by impaired establishment of root system architecture, reduced leaf chlorophyll content, maximum light quantum effect (QY_max), leaf relative water content, stomatal aperture and osmotic potential, etc. AMF inoculation could significantly alleviate this inhibitory effect, improve the physiological response of tea plants under drought stress and thus promote tea plant growth. The results indicate that AMF could promote the absorption of water and nutrients, alleviate the damage of drought stress and improve the drought resistance of tea seedlings by improving root morphology, promoting the water retention and photosynthetic capacity, adjusting the stomatal and osmotic balance, and the promotion effect of AMF became more significant with the extension of drought time.

参考文献

[1] Zhang S Y, Liu J J, Zhong G X, et al.Genome-wide identification and expression patterns of the C2H2-Zinc finger gene family related to stress responses and catechins accumulation in Camellia sinensis (L.) O. Kuntze[J]. International Journal of Molecular Sciences, 2021, 22(8): 4197-4214.
[2] Dai F J, Rong Z Y, Wu Q S, et al.Mycorrhiza improves plant growth and photosynthetic characteristics of tea plants in response to drought stress[J]. Biocell, 2022, 46(5): 1339-1346.
[3] Shen J Z, Wang S S, Sun L T, et al.Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering[J]. Frontiers in Plant Science, 2022, 13: 978531. doi: 10.3389/fpls.2022.978531.
[4] 黄文镜, 杨树华, 葛红, 等. AMF对观赏植物生长发育影响的研究进展[J]. 中国农学通报, 2023, 39(7): 55-63.
Huang W J, Yang S H, Ge H, et al.Research of AMF on the growth and development of ornamental plants[J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 55-63.
[5] Bagheri V, Shamshiri M H, Alaei H, et al.The role of inoculum identity for growth, photosynthesis, and chlorophyll fluorescence of zinnia[J]. Bhotosynthetica, 2019, 57(2): 409-419.
[6] Ye Q H, Wang H, Li H.Arbuscular mycorrhizal fungi enhance drought stress tolerance by regulating osmotic balance[J]. Australian Journal of Grape and Wine Research, 2023, 2023: 1-13.
[7] Abdurrahim Y, Ertan Y, Hilal Y, et al.Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.)[J]. Sustainability, 2023, 15(7): 5982-5996.
[8] Bahadur A L I, Batool A S F A, Nasir F A H A D, et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(17): 4199-4217.
[9] Liang S M, Li Q S, Liu M Y, et al.Mycorrhizal effects on growth and expressions of stress-responsive genes (aquaporins and SOSs) of tomato under salt stress[J]. Journal of Fungi, 2022, 8(12): 1305-1315.
[10] Yan Q X, Li X Y, Xiao X F, et al.Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): e9091. doi: 10.1002/ece3.9091.
[11] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural' and ‘cultivated' ecosites[J]. Biology and Fertility of Soils, 2008, 44: 491-500.
[12] 卢东升, 吴小芹. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报(自然科学版), 2005, 29(3): 33-36.
Lu D S, Wu X Q.Species of VAM fungi around tea roots in the southern area of Henan province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2005, 29(3): 33-36.
[13] 王玉娟, 高秀兵, 吴强盛, 等. 不同水分条件下AM真菌对福鼎大白茶生长和茶叶品质的影响[J]. 茶叶科学, 2020, 40(5): 588-596.
Wang Y J, Gao X B, Wu Q S, et al.Influences of arbuscular mycorrhizal fungi on plant growth and tea quality of Fuding Dabaicha seedlings under different water conditions[J]. Journal of Tea Science, 2020, 40(5): 588-596.
[14] 许平辉, 王飞权, 齐玉岗, 等. 丛枝菌根真菌对茶树抗旱性的影响[J]. 西北农业学报,2017, 26(7): 1033-1040.
Xu P H, Wang F Q, Qi Y G, et al.Effect of arbuscular mycorrhiza fungi on drought resistance in tea plant (Camellia sinensis)[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(7): 1033-1040.
[15] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006.
Wang X K.Experimental principles and techniques of plant physiology and biochemistry [M]. 2nd ed. Beijing: Higher Education Press, 2006.
[16] Phillips J M, Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55: 158-161.
[17] Bethlenfalvay G J, Ames R N.Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi[J]. Soil Science Society of America Journal, 1987, 51: 834-837.
[18] Bajji M, Lutts S, Kinet J M.Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions[J]. Plant Science, 2001, 160(4): 669-681.
[19] 孙琪璐. 复水方式对干旱胁迫下茶树的影响及CsSnRK2基因家族的克隆与表达[D]. 合肥: 安徽农业大学, 2019.
Sun Q L.Effect of rehydration method on tea plant under drought stress and cloning and expression of CsSnRK2 gene family [D]. Hefei: Anhui Agricultural University, 2019.
[20] 杨妮, 万绮雯, 李逸民, 等. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394.
Yang N, Wan Q W, Li Y M, et al.Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant[J]. Acta Horticulturae Sinica, 2022, 49(2): 378-394.
[21] Liu C Y, Hao Y, Wu X L, et al.Arbuscular mycorrhizal fungi improve drought tolerance of tea plants via modulating root architecture and hormones[J]. Plant Growth Regulation, 2024, 102(1): 13-22.
[22] Zou Y N, Zhang F, Srivastava A K, et al.Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress[J]. Frontiers Plant Science, 2021, 11: 600792. doi: 10.3389/fpls.2020.600792.
[23] Liu C Y, Wang Y J, Wu Q S, et al.Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48(4): 1993-2005.
[24] Ortas I, Rafique M, Çekiç F Ö.Do mycorrhizal fungi enable plants to cope with abiotic stresses by overcoming the detrimental effects of salinity and improving drought tolerance?[J]. Symbiotic Soil Microorganisms: Biology and Applications, 2021: 391-428.
[25] 李雪. 丛枝菌根真菌对干旱胁迫下柑橘幼苗生长及抗旱性的影响[D]. 重庆: 西南大学, 2022.
Li X.Effects of arbuscular mycorrhizal fungi on growth and drought resistance of citrus seedlings under water stress [D]. Chongqing: Southwest University, 2022.
[26] 蒲子天, 张林, 张弛, 等. 丛枝菌根真菌与植物共生影响植物水分状态的研究进展[J]. 土壤, 2022, 54(5): 882-889.
Pu Z T, Zhang L, Zhang C, et al.Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime[J]. Soils, 2022, 54(5): 882-889.
[27] Guo X N, Hao Y, Wu X L, et al.Exogenous easily extractable glomalin-related soil protein stimulates plant growth by regulating tonoplast intrinsic protein expression in lemon[J]. Plants, 2023, 12(16): 2955-2967.
[28] Liu C Y, Guo X N, Dai F J, et al.Mycorrhizal symbiosis enhances P uptake and indole-3-acetic acid accumulation to improve root morphology in different citrus genotypes[J]. Horticulture, 2024, 10(4): 339-415.
[29] Liu C Y, Zhang F, Zhang D J, et al.Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress[J]. Scientific Reports, 2018, 8(1): 1978-1987.
[30] 王浩, 孙丽英. 植物激素调控丛枝菌根发育的作用机制研究进展[J]. 微生物学通报, 2022, 49(10): 4448-4466.
Wang H, Sun L Y.Mechanisms of phytohormones in regulating arbuscular mycorrhiza development[J]. Microbiology China, 2022, 49(10): 4448-4466.
[31] 方必君, 卓定龙, 刘晓洲, 等. 干旱胁迫及复水对野牡丹光合和叶绿素荧光参数的影响[J]. 热带农业科学, 2023, 43(2): 44-49.
Fang B J, Zhuo D L, Liu X Z, et al.Effects of drought stress and rehydration on photosynthetic and chlorophyll fluorescence parameters of Melastoma candidum D. Don[J]. Chinese Journal of Tropical Agriculture, 2023, 43(2): 44-49.
[32] 马坤, 王彦淇, 杨建军, 等. 不同干旱胁迫条件下丛枝菌根真菌对木棉叶绿素荧光参数的影响[J]. 植物资源与环境学报, 2017, 26(3): 35-43.
Ma K, Wang Y Q, Yang J J, et al.Effect of arbuscular mycorrhizal fungi on chlorophyll fluorescence parameters of Bombax ceiba under different drought stress conditions[J]. Journal of Plant Resources and Environment, 2017, 26(3): 35-43.
[33] 吴学蕤, 赵庆霞, 蔡银美, 等. 干旱-复水对构树叶片水势和气孔开闭的影响[J]. 草地学报, 2023, 31(3): 769-776.
Wu X R, Zhao Q X, Cai Y M, et al.Effects of drought-rewatering on leaf water potential and stomatal opening and closing of Broussonetia papyrifera[J]. Acta Agrestia Sinica, 2023, 31(3): 769-776.
[34] 刘婷, 唐明. 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响[J]. 植物生态学报, 2014, 38(9): 1001-1007.
Liu T, Tang M.Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1001-1007.
[35] 杨海莉. 小花碱茅对渗透胁迫与等渗透势盐胁迫的生理响应[D]. 兰州: 兰州大学, 2019.
Yang H L.Physiological response of Puccinellia tenuiflora to osmotic and isotonic salt stress [D]. Lanzhou: Lanzhou University, 2019.
[36] 李津津, 赵书岗, 安秀红, 等. 干旱胁迫下核桃生理适应性及抗性指标筛选[J]. 中国果树, 2023, 84(3): 72-78.
Li J J, Zhao S G, An X H, et al.Physiological adaptation of walnut under drought stress and screening of its resistance indexes[J]. China Fruits, 2023, 84(3): 72-78.
[37] 张菲, 邹英宁, 吴强盛. AM真菌摩西管柄囊霉对干旱胁迫下枳抗氧化酶基因表达的影响[J]. 菌物学报, 2019, 38(11): 2043-2050.
Zhang F, Zou Y N, Wu Q S.Effects of Funneliformis mosseae on the expression of antioxidant enzyme genes in trifoliate orange exposed to drought stress[J]. Mycosystema, 2019, 38(11): 2043-2050.
文章导航

/