欢迎访问《茶叶科学》,今天是
研究报告

不同茶树品种叶片细胞壁氟富集差异探究

  • 刘昱 ,
  • 杨培迪 ,
  • 张培凯 ,
  • 詹文礼 ,
  • 李游 ,
  • 姚苏航 ,
  • 赵洋 ,
  • 成杨 ,
  • 刘振 ,
  • 沈程文
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.湖南省茶叶研究所,湖南 长沙 410125
刘昱,男,硕士研究生,主要从事茶树栽培育种方面的研究。

收稿日期: 2024-07-19

  修回日期: 2024-09-02

  网络出版日期: 2024-11-08

基金资助

湖南省农业科技创新资金项目(2023CX68)、国家现代农业产业技术体系(CARS-19)、国家重点研发计划(2022YFD1600801)

Investigation of Differential Fluorine Enrichment in Leaf Cell Walls of Different Tea Cultivars

  • LIU Yu ,
  • YANG Peidi ,
  • ZHANG Peikai ,
  • ZHAN Wenli ,
  • LI You ,
  • YAO Suhang ,
  • ZHAO Yang ,
  • CHENG Yang ,
  • LIU Zhen ,
  • SHEN Chengwen
Expand
  • 1. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China;
    2. Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

Received date: 2024-07-19

  Revised date: 2024-09-02

  Online published: 2024-11-08

摘要

茶树是一种氟超富集植物,不同茶树品种的叶片富集氟含量存在差异。为探究茶树叶片细胞壁氟富集规律,检测了15个茶树品种的叶片氟含量,以及叶片果胶、半纤维素、纤维素与其对应的氟含量,分析不同成熟度叶片细胞壁氟分布。结果显示,果胶是体现品种细胞壁氟富集成熟度差异的关键细胞壁组分。15个品种中,涟茶7号、槠叶齐、上梅洲种的成熟叶果胶含量与果胶氟含量都比嫩叶高,而铁观音是唯一成熟叶比嫩叶中果胶氟含量低的品种。细胞壁组分氟占比的相关性分析表明,茶树叶片成熟度越高,氟含量越高,且均呈细胞壁多个组分富集氟的趋势。通过综合评价及聚类分析筛选,茶树品种寒绿成熟叶组和嫩叶组均具有高细胞壁氟富集水平(D1-4=0.704 6,D5-8=0.928 6);福鼎大白茶、湘波绿、湘波绿2号、碧云、黔湄702具有中等细胞壁氟富集水平(D1-4=0.326 7~0.486 1,D5-8=0.484 4~0.699 3);云南乌黑大叶、槠叶齐具有低细胞壁氟富集水平(D1-4=0.146 5~0.268 8,D5-8=0.222 3~0.345 7)。本研究从品种和叶片成熟度角度探究茶树细胞壁氟富集规律及其差异性,为低氟茶树分子育种提供品种参考。

本文引用格式

刘昱 , 杨培迪 , 张培凯 , 詹文礼 , 李游 , 姚苏航 , 赵洋 , 成杨 , 刘振 , 沈程文 . 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024 , 44(5) : 735 -746 . DOI: 10.13305/j.cnki.jts.2024.05.003

Abstract

Tea plants are known to hyperaccumulate fluorine, with significant variation in fluorine accumulation among different cultivars. To explore the patterns of fluorine accumulation in tea leaf cell walls, the fluorine content in leaves of 15 tea cultivars was measured. Moreover, the contents of pectin, hemicellulose, cellulose components, and their respective fluorine contents were analyzed. The distribution of fluorine in the cell walls at different maturity stages of leaves were examined. The results indicate that pectin is a crucial component reflecting the differences in fluoride accumulation and maturity level of the cell walls among cultivars. Only the mature leaves of ‘Liancha 7', ‘Zhuyeqi' and ‘Shangmeizhouzhong' increased pectin content and fluoride content in pectin compared to the young leaves. ‘Tieguanyin' was the only cultivar with the fluoride content in pectin decreased in the mature leaves compared to the young leaves. Correlation analysis of the fluoride proportion in the cell wall components reveals that higher fluoride content in the leaves correlates with greater maturity, reflecting a trend of multi-component fluoride accumulation in the cell walls. Through a comprehensive evaluation and cluster analysis, ‘Hanlü' exhibits consistently high levels of fluorine accumulation in cell walls at different maturity stages (D1-4=0.704 6, D5-8=0.928 6). ‘Fuding Dabaicha', ‘Xiangbolü', ‘Xiangbolü 2', ‘Biyun', and ‘Qianmei 702' show moderate levels of fluorine enrichment in cell walls (D1-4=0.3267-0.4861, D5-8=0.484 4~0.699 3), while ‘Yunnan Wuheidaye' and ‘Zhuyeqi' exhibit low levels of fluorine accumulation (D1-4=0.146 5-0.268 8, D5-8=0.2223-0.345 7). This study explored the regularity and difference of fluorine accumulation in tea cell walls from the perspectives of cultivar and leaf maturity, and provided insights for molecular breeding of low-fluorine tea cultivars.

参考文献

[1] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan province, PR China[J]. Chemosphere, 2003, 52(9): 1475-82.
[2] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011.
Li C L.Study on the effect and mechanism of fluoride in the physiology and biochemistry of tea seedings [D]. Wuhan: Huazhong Agricultural University, 2011.
[3] Singh B, Avci U, Inwood S E E, et al. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles[J]. Plant Physiology, 2009, 150(2): 684-699.
[4] 高慧敏, 朱晓静, 李攀攀, 等. 茶多糖对氟离子的吸附特性研究[J]. 茶叶科学, 2016, 36(4): 396-404.
Gao H M, Zhu X J, Li P P, et al.Research on adsorption characteristics of tea polysaccharides to fluorine[J]. Journal of Tea Science, 2016, 36(4): 396-404.
[5] 刘思怡, 朱晓静, 房峰祥, 等. 茶树叶片氟亚细胞分布及其与细胞壁结合特性的研究[J]. 茶叶科学, 2018, 38(3): 305-312.
Liu S Y, Zhu X J, Fang F X, et al.Fluorine subcellular distribution and its combining characteristics with cell wall in tea leaves (Camellia sinensis)[J]. Journal of Tea Science, 2018, 38(3): 305-312.
[6] 朱晓静. 茶多糖氟测定方法及多糖与氟结合方式的初步研究[D]. 武汉: 华中农业大学, 2017.
Zhu X J.Study on the determination method of fluorine in tea polysaccharide and way of combination with the tea polysaccharide [D]. Wuhan: Huazhong Agricultural University, 2017.
[7] Yang X, Yu Z, Zhang B, et al.Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Scientia Horticulturae, 2015, 184: 78-84.
[8] 陈瑞鸿, 梁月荣, 陆建良, 等. 茶树对氟富集作用的研究[J]. 茶叶, 2002(4): 187-190.
Chen R H, Liang Y R, Lu J L, et al.Studies on fluorine enrichment in tea plant(Camellia sinensis)[J]. Journal of Tea, 2002(4): 187-190.
[9] 蔡荟梅, 彭传燚, 李成林, 等. 三个品种茶树氟富集特性及其在亚细胞中的分布[J]. 中国农业科学, 2013, 46(8): 1668-1675.
Cai H M, Peng C Y, Li C L, et al.Fluoride accumulation and its subcellular distribution in three tea plants[J]. Scientia Agricultura Sinica, 2013, 46(8): 1668-1675.
[10] Renard C.Variability in cell wall preparations: quantification and comparison of common methods[J]. Carbohydrate Polymers, 2005, 60(4): 515-522.
[11] Figueroa C R, Opazo M C, Vera P, et al.Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit[J]. Food Chemistry, 2012, 132(4): 2014-2022.
[12] 朱晓静, 房峰祥, 张月华, 等. 茶叶及茶多糖中氟测定前处理方法的比较研究[J]. 茶叶科学, 2015, 35(2): 145-150.
Zhu X J, Fang F X, Zhang Y H, et al.Comparison on the pretreatment methods of tea and tea polysaccharides for determination of fluorine content[J]. Journal of Tea Science, 2015, 35(2): 145-150.
[13] 刘生, 郑添妍, 高晗, 等. 不同提取方法对黄秋葵果胶含量和结构特性的影响[J]. 现代食品科技, 2019, 35(3): 161-168.
Liu S, Zheng T Y, Gao H, et al.Effects of different extraction methods on the content and structural properties of pectin from okra[J]. Modern Food Science and Technology, 2019, 35(3): 161-168.
[14] 王政, 黄广民, 赵斌, 等. 新鲜椰衣纤维表面半纤维素含量的测定及去除[J]. 热带作物学报, 2018, 39(1): 156-161.
Wang Z, Huang G M, Zhao B, et al.Determination and removal of hemicellulose content on the surface of coir fiber[J]. Chinese Journal of Tropical Crops, 2018, 39(1): 156-161.
[15] 安玉民, 王菊葵, 黄烨, 等. 马铃薯秸秆中纤维素与半纤维素含量的测定[J]. 现代农业科技, 2016(17): 159-160.
An Y M, Wang J K, Huang Y, et al.Determination of cellulose and hemicellulose content in potato stalk[J]. Modern Agricultural Science and Technology, 2016(17): 159-160.
[16] 中华人民共和国卫生部. 砖茶含氟量: GB 19965—2005 [S]. 北京: 中国标准出版社, 2005.
Ministry of Health of the People's Republic of China. Fluoride content in brick tea: GB 19965—2005 [S]. Beijing: Standards Press of China, 2005.
[17] 汤云川, 张庆沛, 冯焱, 等. 大凉山地区不同马铃薯品种产量和营养品质的综合评价[J]. 中国蔬菜, 2024(6): 89-100.
Tang Y C, Zhang Q P, Feng Y, et al.Comprehensive evaluation of yield and nutritional quality of different potato varieties in daliangshan zone[J]. China Vegetables, 2024(6): 89-100.
[18] Joo J Y, Kim M S, Sung J.Transcriptional changes of cell wall organization genes and soluble carbohydrate alteration during leaf blade development of rice seedlings[J]. Plants, 2021, 10(5): 823. doi: 10.3390/plants10050823.
[19] 罗金蕾. 茶树叶细胞壁富集氟机制研究[D]. 武汉: 华中农业大学, 2020.
Luo J L.Study on mechanism of fluorine accumulation in cell wall of tea plant leaf [D]. Wuhan: Huazhong Agricultural University, 2020.
[20] Boex-Fontvieille E, Davanture M, Jossier M, et al.Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves[J]. Journal of Experimental Botany, 2014, 65(17): 4997-5010.
[21] Pedersen G B, Blaschek L, Frandsen K E H, et al. Cellulose synthesis in land plants[J]. Molecular Plant, 2023, 16(1): 206-231.
[22] 杜亚如. 茶树叶片细胞壁果胶和半纤维素参与氟累积的机制研究[D]. 武汉: 华中农业大学, 2019.
Du Y R.Studies on mechanism of cell wall pectin and hemicellulose involved in the fluorine accumulation in tea leaves [D]. Wuhan: Huazhong Agricultural University, 2019.
[23] Jarvis M C.Structure and properties of pectin gels in plant cell walls[J]. Plant, Cell & Environment, 2006, 7(3): 153-164.
[24] Cosgrove D J.Structure and growth of plant cell walls[J] . Nature Reviews Molecular Cell Biology, 2024, 65(17): 340-358.
[25] Luo J, Hu K, Qu F, et al.Metabolomics analysis reveals major differential metabolites and metabolic alterations in tea plant leaves (Camellia sinensis L.) under different fluorine conditions[J]. Journal of Plant Growth Regulation, 2021, 40(2): 798-810.
[26] Yang P, Liu Z, Zhao Y, et al.Comparative study of vegetative and reproductive growth of different tea varieties response to different fluoride concentrations stress[J]. Plant Physiology and Biochemistry, 2020, 154: 419-428.
[27] Sénéchal F, Wattier C, Rustérucci C, et al.Homogalacturonan-modifying enzymes: structure, expression, and roles in plants[J]. Journal of Experimental Botany, 2014, 65(18): 5125-60.
[28] Yang X, Gan Q, Sun X, et al.Effects of molybdenum on cell wall component of wheat leaf under different growth stages[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 587-595.
[29] 李春雷, 徐红梅, 刘杰, 等. 铝在茶树叶片亚细胞中的分布及其与细胞壁的结合研究[J]. 浙江农业学报, 2023, 35(3): 509-514.
Li C L, Xu H M, Liu J, et al.Aluminum subcellular distribution and its combining characreristics with cell wall in tea leaves[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 509-514.
[30] Ren C, Qi Y, Huang G, et al.Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses[J]. Journal of Environmental Sciences, 2020, 88: 209-216.
文章导航

/