欢迎访问《茶叶科学》,今天是
研究报告

我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析

  • 陈世春 ,
  • 江宏燕 ,
  • 廖姝然 ,
  • 陈亭旭 ,
  • 牛金志 ,
  • 王晓庆
展开
  • 1.重庆市农业科学院茶叶研究所,重庆 402160;
    2.西南大学植物保护学院,重庆 400715
陈世春,女,副研究员,主要从事茶树害虫分子生物学及防控技术研究。

收稿日期: 2024-05-31

  修回日期: 2024-07-31

  网络出版日期: 2024-11-08

基金资助

国家现代农业产业技术体系(CARS-19)

Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China

  • CHEN Shichun ,
  • JIANG Hongyan ,
  • LIAO Shuran ,
  • CHEN Tingxu ,
  • NIU Jinzhi ,
  • WANG Xiaoqing
Expand
  • 1. Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing 402160, China;
    2. College of Plant Protection, Southwest University, Chongqing 400715, China

Received date: 2024-05-31

  Revised date: 2024-07-31

  Online published: 2024-11-08

摘要

茶毛虫是一种危害茶叶生产的重要害虫和人类皮肤致敏原,布尼亚病毒在茶毛虫的不同地理种群中广泛分布,研究茶毛虫与茶毛虫布尼亚病毒(Euproctis pseudoconspersa bunyavirus,EpBYV)遗传背景可为更好地防治茶毛虫和开发利用病毒资源提供理论支撑。采集了15个地理种群共148个茶毛虫幼虫样本,测定了茶毛虫的COIND5序列及EpBYV的RdRp序列,利用软件DnaSP 6.12.03、Arlequin 3.5.2.2和MEGA 7.0.26等进行遗传多样性分析。合并COIND5序列分析发现,茶毛虫的15个地理种群具有较高的单倍型多样性(h=0.880 68)和较低的核苷酸多样性(π=0.003 17),99个种群对间遗传分化显著较高(FST>0.290,P<0.05),AMOVA分析显示遗传变异主要来自于种群之间(87.12%),且组间分化与我国地势第二、三级阶梯分界吻合,种群历史动态分析推测茶毛虫总群体在近期较为稳定。EpBYV的RdRp序列在除重庆城口种群外的138个样本中成功扩增,具有较高的单倍型多样性(h=0.935 26)和相对较低的核苷酸多样性(π=0.017 95),93个种群对间遗传分化显著较高(FST>0.257,P<0.05),遗传变异主要来自于种群之间(62.13%),种群历史动态分析支持EpBYV种群近期经历了种群扩张事件。综合研究结果表明,我国茶毛虫总群体在近期将较为稳定,但在重庆城口和福建宁德有种群扩张风险;EpBYV群体经历了种群扩张,EpBYV在茶毛虫群体中的感染率和种群扩张能力都较高,具有应用于茶毛虫生物防治的潜力。

本文引用格式

陈世春 , 江宏燕 , 廖姝然 , 陈亭旭 , 牛金志 , 王晓庆 . 我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析[J]. 茶叶科学, 2024 , 44(5) : 793 -806 . DOI: 10.13305/j.cnki.jts.2024.05.009

Abstract

Tea tussock moth, Euproctis pseudoconspersa, is an important pest which damages tea plants and causes human dermatitis. Euproctis pseudoconspersa bunyavirus, EpBYV, is a bunyavirus that widely distributed in different geographical populations of E. pseudoconspersa. In order to control the E. pseudoconspersa and utilize the virus resources, it is necessary to fully understand the genetic background of E. pseudoconspersa and EpBYV. In this study, 148 samples of E. pseudoconspersa larvae from 15 geographic populations were collected. COI and ND5 gene sequences of E. pseudoconspersa and RdRp sequences of EpBYV were determined. The genetic diversities of E. pseudoconspersa and EpBYV were analyzed by DnaSP 6.12.03, Arlequin 3.5.2.2 and MEGA 7.0.26. Sequence analysis of the combined sequences of COI and ND5 genes shows that 15 geographic populations have high haplotype diversity (h=0.880 68) and low nucleotide diversity (π=0.003 17). Significantly high genetic differentiation among 99 population pairs (FST>0.290, P<0.05) was identified. Molecular variance analysis (AMOVA) shows that the genetic differentiation of E. pseudoconspersa was mainly among populations (87.12%), and the differentiation among groups was consistent with the second and third ladder boundaries in China. Demographic history analysis suggests that the population of E. pseudoconspersa is relatively stable. RdRp sequences were successfully amplified in the 138 samples except CK population. RdRp sequence analysis reveals that the 14 geographic populations of EpBYV had high haplotype diversity (h=0.935 26) and relatively low nucleotide diversity (π=0.017 95). The 93 population pairs had significantly higher genetic differentiation (FST>0.257, P<0.05). AMOVA analysis shows that the genetic differentiation of EpBYV was mainly between populations (62.13%). Demographic history analysis reveals that EpBYV might have undergone population expansions in the past. Based on the analysis of this study, the population of E. pseudoconspersa in China is relatively stable, and there is a risk of population expansion in Chengkou, Chongqing and Ningde, Fujian. The population of EpBYV has experienced population expansion. The infection rate and population expansion ability of EpBYV in E. pseudoconspersa are high, which has good potential for biological control of E. pseudoconspersa.

参考文献

[1] 张汉鹄, 谭济才. 中国茶树害虫及其无公害治理[M]. 合肥: 安徽科学技术出版社, 2004.
Zhang H H, Tan J C.Chinese tea pests and their pollution-free control [M]. Hefei: Anhui Science and Technology Press, 2004.
[2] 戈峰, 王永模, 刘向辉. 茶毛虫性引诱剂诱杀效果分析[J]. 昆虫知识, 2003, 40(3): 237-239.
Ge F, Wang Y M, Liu X H.The effectiveness of synthetic sex pheromone by mass trapping as a control method for the tea tussock moth, Euproctis pseudoconspersa[J]. Entomological Knowledge, 2003, 40(3): 237-239.
[3] 韩方岸, 胡云, 李世荣, 等. 茶毛虫生态特性及人群皮炎暴发的观察[J]. 中国寄生虫病防治杂志, 2005, 18(5): 378-381.
Han F A, Hu Y, Li S R, et al.Observation on the ecology of tea Euproctis pseudoconspersa strand and the outbreak of larvae dermatitis in crowd[J]. Chinese Journal of Parasitic Disease Control, 2005, 18(5): 378-381.
[4] Dong W W, Dong S Y, Jiang G F, et al.Characterization of the complete mitochondrial genome of tea tussock moth, Euproctis pseudoconspersa (Lepidoptera: Lymantriidae) and its phylogenetic implications[J]. Gene, 2016, 577(1): 37-46.
[5] 彭萍, 王晓庆, 李品武. 茶树病虫害测报与防治技术[M]. 北京: 中国农业出版社, 2013.
Peng P, Wang X Q, Li P W.Forecast and control techniques of tea diseases and pests [M]. Beijing: China Agriculture Press, 2013.
[6] Hazarika L K, Bhuyan M, Hazarika B N.Insect pests of tea and their management[J]. Annual Review of Entomology, 2009, 54: 267-284.
[7] Ye G Y, Xiao Q, Chen M, et al.Tea: biological control of insect and mite pests in China[J]. Biological Control, 2014, 68: 73-91.
[8] 付建玉, 席羽, 唐美君, 等. 茶毛虫核型多角体病毒不同分离株的毒力水平与遗传结构关系分析[J]. 茶叶科学, 2011, 31(4): 289-294.
Fu J Y, Xi Y, Tang M J, et al.Study on the relationship between virulence and genetic structure of four wild isolates of Euproctis pseudoconspersa nuclear polyhedrosis virus[J]. Journal of Tea Science, 2011, 31(4): 289-294.
[9] 厉晓腊, 金轶伟, 柴一秋, 等. 茶毛虫核型多角体病毒对茶毛虫的致病性研究[J]. 茶叶科学, 2006, 26(4): 265-269.
Li X L, Jin Y W, Chai Y Q, et al.The pathogenicity of Euproctis pseudoconspersa nuclear polyhedrosis virus on the larvae of tea tussork (Euproctis pseudoconspersa Strand)[J]. Journal of Tea Science, 2006, 26(4): 265-269.
[10] 王礼中, 肖强, 张传溪. 茶毛虫核型多角体病毒ph基因抗体的制备与利用[J]. 茶叶科学, 2008, 28(4): 260-266.
Wang L Z, Xiao Q, Zhang C X.Preparation of the antibody against EupsNPV polyhedrin and its utilization in detection of the viral pesticide[J]. Journal of Tea Science, 2008, 28(4): 260-266.
[11] 李兆群. 我国茶园有害生物生物防治技术研究及应用[J]. 中国茶叶, 2022, 44(5): 8-12.
Li Z Q.Research and application of tea pest control technology in China[J]. China Tea, 2022, 44(5): 8-12.
[12] 陈宗懋, 蔡晓明, 周利, 等. 中国茶园有害生物防控40年[J]. 中国茶叶, 2020, 42(1): 1-8.
Chen Z M, Cai X M, Zhou L, et al.Developments on tea plant pest control in past 40 years in China[J]. China Tea, 2020, 42(1): 1-8.
[13] 冷杨, 肖强, 殷坤山. 茶毛虫核型多角体病毒Bt混剂的作用特性[J]. 植物保护学报, 2007, 34(2): 177-181.
Leng Y, Xiao Q, Yin K S.The effect specialty of EpNPV-Bt preparation[J]. Acta Phytophylacica Sinica, 2007, 34(2): 177-181.
[14] 唐美君, 殷坤山, 郭华伟, 等. 茶毛虫核型多角体病毒和Bt混剂的配比筛选及药效评价[J]. 植物保护, 2010, 36(5): 165-167.
Tang M J, Yin K S, Guo H W, et al.Screening for ratio of EpNPV mixed with Bt and evaluation of its control effect[J]. Plant Protection, 2010, 36(5): 165-167.
[15] 王晓庆. 茶毛虫的发生规律及其感染的病毒分析[D]. 重庆: 西南大学, 2021.
Wang X Q.Study on the occurrence and viral infection of Euproctis pseudoconspersa [D]. Chongqing: Southwest University, 2021.
[16] Wang X Q, Gu Q Y, Zhang W, et al.Prevalence of a novel bunyavirus in tea tussock moth Euproctis pseudoconspersa (Lepidoptera: Lymantriidae)[J]. Journal of Insect Science, 2021, 21(4): 5.doi: 10.1093/jisesa/ieab045.
[17] Marklewitz M, Zirkel F, Kurth A, et al.Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family[J]. PNAS, 2015, 112(24): 7536-7541.
[18] Bolling B G, Olea-Popelka F J, Eisen L, et al. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus[J]. Virology, 2012, 427(2): 90-97.
[19] Newman C M, Cerutti F, Anderson T K, et al.Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States[J]. Vector-Borne and Zoonotic Diseases, 2011, 11(8): 1099-1105.
[20] 王星驰, 晏嫦妤. 茶毛虫发生规律与生物防治研究进展[J]. 广东茶业, 2023(5): 16-22.
Wang X C, Yan C Y.Research progress on occurrence regularity and biological control of Euproctis pseudoconspersa[J]. Guangdong Tea Industry, 2023(5): 16-22.
[21] 马蕊, 白阿先, 卢木朴. 4种生物农药防治云南绿春县茶毛虫的效果研究[J]. 昆明学院学报, 2022, 44(3): 53-56.
Ma R, Bai A X, Lu M P.Effect of four kinds of biological pesticides on controlling Euproctis pseudoconspersa in Lüchun county of Yunnan province[J]. Journal of Kunming University, 2022, 44(3): 53-56.
[22] 李金玉, 牛东升, 陈杰, 等. 茶园周边景观格局对茶小绿叶蝉种群遗传结构的影响[J]. 昆虫学报, 2020, 63(10): 1242-1259.
Li J Y, Niu D S, Chen J, et al.Effects of landscape pattern around tea plantation on the population genetic structure of the tea green leafhopper, Empoasca onukii (Hemiptera: Cicadellidae)[J]. Acta Entomologica Sinica, 2020, 63(10): 1242-1259.
[23] 陈世春, 江宏燕, 廖姝然, 等. 基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构[J]. 茶叶科学, 2023, 43(6): 795-805.
Chen S C, Jiang H Y, Liao S R, et al.Analysis of genetic diversity and genetic structure in geographic populations of Stephanitis chinensis from China based on mitochondrial DNA COI sequence[J]. Journal of Tea Science, 2023, 43(6): 795-805.
[24] 罗林丽, 孟泽洪, 李帅, 等. 中国南方茶棍蓟马地理种群遗传分化分析[J]. 昆虫学报, 2022, 65(4): 500-511.
Luo L L, Meng Z H, Li S, et al.Genetic differentiation analysis of geographical populations of Dendrothrips minowai (Thysanoptera: Thripidae) in South China[J]. Acta Entomologica Sinica, 2022, 65(4): 500-511.
[25] Zhang D X, Hewitt G M.Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects[J]. Insect Molecular Biology, 1997, 6(2): 143-150.
[26] Simon C, Buckley T R, Frati F, et al.Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annual Review of Ecology Evolution and Systematics, 2006, 37: 545-579.
[27] Rozas J.DNA sequence polymorphism analysis using DnaSP[J]. Methods in Molecular Biology, 2009, 537: 337-350.
[28] Rozas J, Ferrer-Mata A, Sanchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302.
[29] 魏丹丹. 书虱种群遗传多样性及线粒体基因组进化研究[D]. 重庆: 西南大学, 2012.
Wei D D.Population genetic diversity and mitochondrial genome analysis of Psocids (Psocoptera: Liposcelididae) [D]. Chongqing: Southwest University, 2012.
[30] Excoffier L, Laval G, Schneider S.Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
[31] Tajima F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[32] Fu Y X.Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
[33] Chen J, Liu Q, Gao L W.Visual tea leaf disease recognition using a convolutional neural network model[J]. Symmetry, 2019, 11(3): 343. doi: 10.3390/sym11030343.
[34] Bandelt H J, Forster P, Röhl A.Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48.
[35] Guindon S, Dufayard J F, Lefort V, et al.New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307-321.
[36] Wei D D, Yuan M L, Wang B J, et al.Population genetics of two asexually and sexually reproducing psocids species inferred by the analysis of mitochondrial and nuclear DNA sequences[J]. Plos One, 2012, 7(3): e33883. doi: 10.1371/journal.pone.0033883.
[37] Rogers A R, Harpending H.Population growth makes waves in the distribution of pairwise genetic differences[J]. Molecuar Biology and Evolution, 1992, 9(3): 552-569.
[38] Slatkin M.Isolation by distance in equilibrium and non-equilibrium populations[J]. Evolution, 1993, 47(1): 264-279.
文章导航

/