欢迎访问《茶叶科学》,今天是
研究报告

茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应

  • 孙娟 ,
  • 陈慧 ,
  • 刘关华 ,
  • 张瀚 ,
  • 黄福印 ,
  • 王玉玺 ,
  • 王诺 ,
  • 保德孟 ,
  • 施江 ,
  • 戴伟东 ,
  • 陈健 ,
  • 付建玉
展开
  • 1.浙江理工大学生命科学与医药学院,浙江 杭州 310018;
    2.中国农业科学院茶叶研究所,浙江 杭州 310008;
    3.农业农村部茶叶质量安全控制重点实验室,浙江 杭州 310008;
    4.农业农村部茶树生物学与资源利用重点实验室,浙江 杭州 310008
孙娟,女,硕士研究生,主要从事茶树与昆虫互作方面的研究,sunjuan0016@163.com。

收稿日期: 2024-04-25

  修回日期: 2024-07-30

  网络出版日期: 2024-11-08

基金资助

中国农业科学院科技创新工程(CAAS-ASTIP-2014-TRICAAS)

Response of γ-Aminobutyric Acid Metabolic Pathway in Tea Plants to Early Infestation of Ectropis obliqua

  • SUN Juan ,
  • CHEN Hui ,
  • LIU Guanhua ,
  • ZHANG Han ,
  • HUANG Fuyin ,
  • WANG Yuxi ,
  • WANG Nuo ,
  • BAO Demeng ,
  • SHI Jiang ,
  • DAI Weidong ,
  • CHEN Jian ,
  • FU Jianyu
Expand
  • 1. College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China;
    4. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China

Received date: 2024-04-25

  Revised date: 2024-07-30

  Online published: 2024-11-08

摘要

茶尺蠖(Ectropis obliqua Prout)为害会诱导茶树释放大量挥发性代谢物,这些代谢物作为重要信号物质在趋避害虫或吸引天敌方面的研究已被广泛报道,但茶尺蠖为害对茶树叶片中非挥发性代谢物质空间变化的影响及其作用尚不清楚。以茶树叶片为材料,限制茶尺蠖仅在叶尖部取食,再采集叶尖部、叶中部、叶基部3个位点组织,基于超高效液相色谱-四极杆轨道阱质谱(UHPLC-Q-Exactive/MS)的分析方法对这3个位点组织的非挥发性代谢物质进行鉴定和分析。结果表明,与空白对照和机械损伤相比,茶尺蠖为害可诱导6种二聚儿茶素类、3种氨基酸类(包括γ-氨基丁酸)、1种黄酮和黄酮苷类、1种酚酸类共11种差异代谢物。与空白对照相比,茶尺蠖为害后,茶树叶片3个位点的γ-氨基丁酸相对含量均明显增加,在叶中部和叶基部均增加了1.99倍,且γ-氨基丁酸生物合成途径中的关键基因在这3个位点均上调表达。茶尺蠖为害后,在叶片叶尖部和叶基部,γ-氨基丁酸的相对含量与其前体物质谷氨酸的相对含量呈显著正相关(P<0.05)。茶尺蠖取食添加了0.2、0.5、2.0 mg·g-1 γ-氨基丁酸的人工饲料后,其体质量和体长均显著小于对照组(P<0.05)。本研究表明,γ-氨基丁酸代谢途径在茶树抵御茶尺蠖为害的早期防御反应中发挥了重要作用,为进一步揭示茶树的生化抗性机制奠定基础。

本文引用格式

孙娟 , 陈慧 , 刘关华 , 张瀚 , 黄福印 , 王玉玺 , 王诺 , 保德孟 , 施江 , 戴伟东 , 陈健 , 付建玉 . 茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应[J]. 茶叶科学, 2024 , 44(5) : 816 -830 . DOI: 10.13305/j.cnki.jts.2024.05.008

Abstract

Tea geometrid (Ectropis obliqua Prout) infestation induces tea plants to release massive amounts of volatile organic compounds (VOCs), which are widely reported as important chemical cues that either repel the pests or attract their enemies. However, the spatial variations and the roles of the non-volatile metabolites in tea leaves infested by the tea geometrids are confusing. Taking tea leaves as materials, the feeding of E. obliqua was limited at the leaf tip, and then the tissues at the leaf tip, middle and base were collected. The non-volatile metabolites of the tissues at the three sites were identified and analyzed by ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive/MS). The results demonstrate that compared with the blank control and mechanical injury tea leaves, tea geometrids induced 11 differential metabolites, including six dimeric catechins, three amino acids (including γ-aminobutyric acid), one flavonoid and flavonoid glycoside, and one phenolic acid compound. After the infestation of the tea geometrids, the relative contents of γ-aminobutyric acid at the three sites in tea leaves were significantly increased compared to the blank control tea leaves, and increased by 1.99-fold in the middle and base of leaves. In addition, the key genes involved in the γ-aminobutyric acid biosynthetic pathway were upregulated at all three sites of tea leaves. There was a significant positive correlation between the relative content of γ-aminobutyric acid and the relative content of glutamic acid (P<0.05). When the tea geometrids were fed with artificial diet supplemented with 0.2 mg·g-1, 0.5 mg·g-1 and 2.0 mg·g-1 γ-aminobutyric acid, their body weight and length were both significantly decreased compared with the control (P<0.05). The present study indicates that the inhibitory neurotransmitter γ-aminobutyric acid plays a pivotal role in the early defense response against tea geometrids, which will shed light on the biochemical resistance mechanism of the tea plants.

参考文献

[1] Walling L L.The myriad plant responses to herbivores[J]. Journal of Plant Growth Regulation, 2000, 19(2): 195-216.
[2] 谢辉, 王燕, 刘银泉, 等. 植物组成型防御对植食性昆虫的影响[J]. 植物保护, 2012, 38(1): 1-5.
Xie H, Wang Y, Liu Y Q, et al.The influence of plant constitutive defense system on phytophagous insects[J]. Plant Protection, 2012, 38(1): 1-5.
[3] Agrawal A A.Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279(5354): 1201-1202.
[4] Akula R, Mukherjee S.New insights on neurotransmitters signaling mechanisms in plants[J]. Plant Signaling & Behavior, 2020, 15(6): 1737450. doi: 10.1080/15592324.2020.1737450.
[5] Kessler A, Baldwin I T.Plant responses to insect herbivory: the emerging molecular analysis[J]. Annual Review of Plant Biology, 2002, 53: 299-328.
[6] Köllner T G, Lenk C, Schnee C, et al.Localization of sesquiterpene formation and emission in maize leaves after herbivore damage[J]. BMC Plant Biology, 2013, 13(1): 15.doi: 10.1186/1471-2229-13-15.
[7] Malook S U, Qi J F, Hettenhausen C, et al.The oriental armyworm (Mythimna separata) feeding induces systemic defence responses within and between maize leaves[J]. Philosophical Transactions of the Royal Society B, 2019, 374(1767): 20180307. doi: 10.1098/rstb.2018.0307.
[8] Li L, Dou N, Zhang H, et al.The versatile GABA in plants[J]. Plant Signaling & Behavior, 2021, 16(3): 1862565.doi:10.1080/15592324.2020.1862565.
[9] Macgregor K B, Shelp B J, Peiris S, et al.Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae[J]. Journal of Chemical Ecology, 2003, 29(9): 2177-2182.
[10] Scholz S S, Malabarba J, Reichelt M, et al.Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding[J]. Frontiers in Plant Science, 2017, 8: 388. doi: 10.3389/fpls.2017.00388.
[11] Bown A W, Hall D E, MacGregor K B. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production[J]. Plant Physiology, 2002, 129(4): 1430-1434.
[12] Bown A W, MacGregor K B, Shelp B J. Gamma-aminobutyrate: defense against invertebrate pests?[J]. Trends in Plant Science, 2006, 11(9): 424-427.
[13] Scholz S S, Reichelt M, Mekonnen D W, et al.Insect herbivory-elicited gaba accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response[J]. Frontiers in Plant Science, 2015, 6: 1128. doi: 10.3389/fpls.2015.01128.
[14] Zhou H L, Chen H Y, Bao D P, et al.Recent advances of γ-aminobutyric acid: physiological and immunity function, enrichment, and metabolic pathway[J]. Frontiers in Nutrition, 2022, 9: 1076223. doi: 10.3389/fnut.2022.1076223.
[15] 周俊萍, 徐玉娟, 温靖, 等. γ-氨基丁酸(GABA)的研究进展[J]. 食品工业科技, 2024, 45(5): 393-401.
Zhou J P, Xu Y J, Wen J, et al.Research progress of γ-aminobutyric acid (GABA)[J]. Science and Technology of Food Industry, 2024, 45(5): 393-401.
[16] 程永祥. 1969—2019年临安茶尺蠖发生特点调查与分析[J]. 中国茶叶, 2020, 42(4): 55-56, 59.
Cheng Y X.Investigation and analysis on the occurrence characteristics of tea geometrid in Lin'an from 1969 to 2019[J]. China Tea, 2020, 42(4): 55-56, 59.
[17] Liu G H, Wang Q, Chen H, et al.Plant-derived monoterpene S-linalool and β-ocimene generated by CsLIS and CsOCS-SCZ are key chemical cues for attracting parasitoid wasps for suppressing Ectropis obliqua infestation in Camellia sinensis L[J]. Plant, Cell & Environment, 2024, 47(3): 913-927.
[18] Liao Y Y, Tan H B, Jian G T, et al.Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light[J]. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12608-12620.
[19] Liu G H, Yang M, Fu J Y.Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2020, 155: 650-657.
[20] Ye M, Liu M M, Erb M, et al.Indole primes defence signalling and increases herbivore resistance in tea plants[J]. Plant, Cell & Environment, 2021, 44(4): 1165-1177.
[21] Qian J J, Liao Y Y, Jian G T, et al.Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants[J]. Plant, Cell & Environment, 2023, 46(11): 3464-3480.
[22] Jing T T, Qian X N, Du W K, et al.Herbivore-induced volatiles influence moth preference by increasing the β-ocimene emission of neighbouring tea plants[J]. Plant, Cell & Environment, 2021, 44(11): 3667-3680.
[23] Chen Y F, Wang Z Y, Gao T, et al.Deep learning and targeted metabolomics-based monitoring of chewing insects in tea plants and screening defense compounds[J]. Plant, Cell & Environment, 2023, 47: 698-713.
[24] Wang W W, Zheng C, Hao W J, et al.Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis[J]. Plos One, 2018, 13(8): e0201670. doi: 10.1371/journal.pone.0201670.
[25] Jing T T, Du W K, Qian X N, et al.UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding[J]. Plant, Cell & Environment, 2024, 47(2): 682-697.
[26] Li X W, Zhang J, Lin S B, et al.(+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants[J]. Plant, Cell & Environment, 2021, 45: 496-511.
[27] Zhu J Y, He Y X, Yan X M, et al.Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6(1): 126. doi:10.1038/s41438-019-0208-5.
[28] Yang Z W, Duan X N, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751.
[29] Gao J J, Zhou M X, Chen D, et al.High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method[J]. Food Chemistry, 2023, 422: 136179. doi: 10.1016/j.foodchem.2023.136179.
[30] Dai W D, Hu Z Y, Xie D C, et al.A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis)[J]. Food Chemistry, 2020, 311: 126007. doi:10.1016/j.foodchem.2019.126007.
[31] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587.
Sun M L, Wang Y S, Yang D Q, et al.Selection of reference genes in real time fluorescence quantitative PCR analysis of tea plants[J]. Chinese Bulletin of Botany, 2010, 45(5): 579-587.
[32] Bown A W, Shelp B J.Plant GABA: not just a metabolite[J]. Trends in Plant Science, 2016, 21(10): 811-813.
[33] Zhang J, Yu Y C, Qian X N, et al.Recent advances in the specialized metabolites mediating resistance to insect pests and pathogens in tea plants (Camellia sinensis)[J]. Plants, 2024, 13(2): 323. doi: 10.3390/plants13020323.
[34] Lin S B, Ye M, Li X W, et al. A novel inhibitor of the jasmonic acid signaling pathway represses herbivore resistance in tea plants [J]. Horticulture Research, 2022, 9: uhab038. doi: 10.1093/hr/uhab038.
[35] 冉伟, 张瑾, 张新, 等. 茶尺蠖幼虫取食提高茶树儿茶素代谢响应强度[J]. 茶叶科学, 2018, 38(2): 133-139.
Ran W, Zhang J, Zhang X, et al.Infestation of Ectropis obliqua affects the catechin metabolism in tea plants[J]. Journal of Tea Science, 2018, 38(2): 133-139.
[36] Zhang X, Ran W, Li X W, et al.Exogenous application of gallic acid induces the direct defense of tea plant against Ectropis obliqua caterpillars[J]. Frontiers in Plant Science, 2022, 13: 833489. doi: 10.3389/fpls.2022.833489.
[37] Huang T F, Jander G, Vos M D.Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis[J]. Phytochemistry, 2011, 72(13): 1531-1537.
[38] Mithöfer A, Boland W.Plant defense against herbivores: chemical aspects[J]. Annual Review of Plant Biology, 2012, 63: 431-450.
[39] Seifikalhor M, Aliniaeifard S, Hassani B, et al.Diverse role of γ-aminobutyric acid in dynamic plant cell responses[J]. Plant Cell Reports, 2019, 38(8): 847-867.
[40] Tarkowski Ł P, Signorelli S, Höfte M.γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action[J]. Plant, Cell & Environment, 2020, 43(5): 1103-1116.
[41] 筱禾. 作用于GABA受体杀虫剂的代谢、作用机制及开发研究[J]. 世界农药, 2019, 41(2): 18-28.
Xiao H.Study on metabolism, mechanism of action and development of insecticides acting on GABA receptors[J]. World Pesticide, 2019, 41(2): 18-28.
[42] Irving S N, Osborne M P, Wilson R G.Studies on L-glutamate in insect haemolymph[J]. Physiological Entomology, 1979, 4(2): 139-146.
[43] Hosie A M, Aronstein K, Sattelle D B, et al.Molecular biology of insect neuronal GABA receptors[J]. Trends in Neurosciences, 1997, 20(12): 578-583.
[44] Kiep V, Vadassery J, Lattke J, et al.Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis[J]. The New Phytologist, 2015, 207(4): 996-1004.
[45] 余光辉, 涂奕霏, 李承龙, 等. 植物GABA信号途径研究[J]. 中南民族大学学报(自然科学版), 2021, 40(5): 472-477.
Yu G H, Tu Y F, Li C L, et al.GABA signaling pathway research in plant kingdoms[J]. Journal of South-central Minzu University (Natural Science Edition), 2021, 40(5): 472-477.
文章导航

/