欢迎访问《茶叶科学》,今天是
研究报告

金萱炒青绿茶中挥发性对映异构体分析方法的优化及应用

  • 张淑怡 ,
  • 马成英 ,
  • 陈维 ,
  • 苗爱清 ,
  • 乔小燕 ,
  • 林冬纯 ,
  • 夏红玲 ,
  • 许靖逸
展开
  • 1.四川农业大学园艺学院 精制川茶四川省重点实验室,四川 成都 611130;
    2.广东省农业科学院茶叶研究所 广东省茶树资源创新利用重点实验室,广东 广州 510640
张淑怡,女,硕士研究生,主要从事茶叶加工理论与技术方面的研究。

收稿日期: 2024-08-17

  修回日期: 2024-10-30

  网络出版日期: 2025-01-08

基金资助

四川省自然科学基金(2023NSFSC0165)、广州市科技计划项目(2023A04J0815)、广东省重点领域研发计划资助(2023B0202120001)、广东省农业科学院科技人才引进专项资金项目(R2021YJ-YB3025)

Optimization and Application of Analysis Method for Volatile Enantiomers in ‘Jinxuan’ Roasted Green Tea

  • ZHANG Shuyi ,
  • MA Chengying ,
  • CHEN Wei ,
  • MIAO Aiqing ,
  • QIAO Xiaoyan ,
  • LIN Dongchun ,
  • XIA Hongling ,
  • XU Jingyi
Expand
  • 1. College of Horticulture, Sichuan Agricultural University, Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China;
    2. Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China

Received date: 2024-08-17

  Revised date: 2024-10-30

  Online published: 2025-01-08

摘要

为探究挥发性对映异构体在炒青绿茶干燥过程中的变化规律,以金萱炒青绿茶为研究对象,优化了基于顶空固相微萃取-对映选择性-气相色谱-质谱联用技术(Headspace solid phase microextraction-enantioselective-gas chromatography-mass spectrometry,HS-SPME-Es-GC-MS)分析挥发性对映异构体的方法,对120 ℃不同干燥时间(30、60、90 min和120 min)处理的4个炒青绿茶样品进行了对映异构体定性定量分析和化学计量学分析。结果显示,HS-SPME的最佳条件为添加NaCl(3 mL,3 mol·L-1,料液体积比为1︰6)、萃取温度60 ℃、萃取时间25 min。Es-GC-MS的最佳升温程序为初始温度35 ℃,保持2 min;以4 ℃·min-1升温至110 ℃,保持10 min;以4 ℃·min-1升温至210 ℃。采用优化方法分析4个炒青绿茶样品,共检出8种对映异构体,且种类不随干燥时间的延长而发生改变,其中R-(-)-芳樟醇、S-(+)-芳樟醇含量随干燥进程增加,其余6种对映异构体含量在超过60 min或90 min时开始下降。层次聚类分析和偏最小二乘法判别分析结果显示,不同干燥时间样品被明显分成4组,根据变量投影重要性(Variable importance in projection,VIP)>1和差异显著性分析筛选出4种差异对映异构体,按VIP值从大到小分别为R-(-)-芳樟醇、(2R,5S)-茶螺烷B、(2R,5R)-茶螺烷A、S-(+)-芳樟醇。本研究可为炒青绿茶干燥过程中香气品质的提升及干燥工艺选择提供参考依据。

本文引用格式

张淑怡 , 马成英 , 陈维 , 苗爱清 , 乔小燕 , 林冬纯 , 夏红玲 , 许靖逸 . 金萱炒青绿茶中挥发性对映异构体分析方法的优化及应用[J]. 茶叶科学, 2024 , 44(6) : 973 -984 . DOI: 10.13305/j.cnki.jts.2024.06.006

Abstract

To investigate the changes in volatile enantiomers during the drying of ‘Jinxuan’ roasted green tea, an optimized method using headspace solid-phase microextraction-enantioselective-gas chromatography-mass spectrometry (HS-SPME-Es-GC-MS) was applied for qualitative and quantitative enantiomer analysis. The chemometric evaluation was also performed on four roasted green tea samples dried at 120 ℃ for different durations (30 min, 60 min, 90 min and 120 min). The optimal HS-SPME conditions were found to be: addition of NaCl (3 mL, 3 mol·L-1, solid-to-liquid ratio of 1∶6, extraction temperature of 60 ℃, and extraction time of 25 min. The optimal temperature program for Es-GC-MS was as follows: initial temperature at 35 ℃ held for 2 min, then ramped up to 110 ℃ at 4 ℃ min-1 and held for 10 min, followed by a further increase to 210 ℃ at 4 ℃ min-1. Using an optimized method to analyze four ‘Jinxuan’ roasted green tea samples, a total of 8 enantiomers were detected, with no change in the types as drying time increased. Among them, the contents of R-(-)-linalool and S-(+)-linalool increased with the drying process, while the contents of the other 6 enantiomers began to decline after 60 min or 90 min. Hierarchical cluster analysis and partial least squares discrimination analysis show that the samples with different drying times were obviously classified into four groups. Based on variable importance in projection (VIP) >1 and significance analysis, four different enantiomers were screened, and their VIP values were ranked in descending order as R-(-)-linalool, (2R,5S)-theaspirane B, (2R,5R)-theaspirane A, and S-(+)-linalool. This study provided a reference for improving aroma quality and selecting drying processes during the roasting of green tea.

参考文献

[1] 张轶斌, 刘鹏, 纪海玉, 等. 绿茶多糖提取工艺优化及其抗氧化活性分析[J]. 食品工业科技, 2022, 43(20): 220-227.
Zhang Y B, Liu P, Ji H Y, et al.Extraction process optimization and antioxidant activity of green tea polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(20): 220-227.
[2] Alam M, Ali S, Ashraf G M, et al.Epigallocatechin 3-gallate: from green tea to cancer therapeutics[J]. Food Chemistry, 2022, 379: 132135. doi: 10.1016/j.foodchem.2022.132135.
[3] 胡蝶, 陈维, 马成英, 等. 高温长时辉干工艺对广东炒青绿茶香气组分的影响[J]. 食品科学, 2022, 43(8): 255-261.
Hu D, Chen W, Ma C Y, et al.Effect of high-temperature and long-time final roasting on aroma of roasted green tea[J]. Food Science, 2022, 43(8): 255-261.
[4] 苏小琴, 孔俊豪, 杜颖颖, 等. 炒青绿茶贮藏过程中风味物质的变化[J]. 中国食品学报, 2023, 23(12): 188-195.
Su X Q, Kong J H, Du Y Y, et al.Changes of flavour substances in the storage process of roasted green tea[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(12): 188-195.
[5] 尤秋爽, 石亚丽, 朱荫, 等. 加工工艺对绿茶关键呈香成分的影响[J]. 食品科学, 2023, 44(8): 194-200.
You Q S, Shi Y L, Zhu Y, et al.Influence of different manufacturing processes on the key aroma-active compounds of green tea[J]. Food Science, 2023, 44(8): 194-200.
[6] Wang B, Qu F, Wang P, et al.Characterization analysis of flavor compounds in green teas at different drying temperature[J]. Food Science & Technology, 2022, 161: 113394. doi: 10.1016/j.lwt.2022.113394.
[7] Zhu Y, Lü H P, Shao C Y, et al.Identification of key odorants responsible for chestnut-like aroma quality of green teas[J]. Food Research International, 2018, 108: 74-82.
[8] Zhu Y, Yan H, Zhang Z, et al.Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach[J]. Food Chemistry, 2021, 365: 130615. doi: 10.1016/j.foodchem.2021.130615.
[9] Qu F F, Li X H, Wang P Q, et al.Effect of thermal process on the key aroma components of green tea with chestnut-like aroma[J]. Journal of the Science of Food and Agriculture, 2023, 103(2): 657-665.
[10] Zhu J, Zhu Y, Wang K, et al.Characterization of key aroma compounds and enantiomer distribution in Longjing tea[J]. Food Chemistry, 2021, 361: 130096. doi: 10.1016/j.foodchem.2021.130096.
[11] Zhu Y, Shao C Y, Lü H P, et al.Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis)[J]. Journal of Chromatography A, 2017, 1490: 177-190.
[12] Zhu Y, Kang S, Yan H, et al.Enantiomeric distributions of volatile lactones and terpenoids in white teas stored for different durations[J]. Food Chemistry, 2020, 320: 126632. doi: 10.1016/j.foodchem.2020.126632.
[13] Mu B, Zhu Y, Lü H P, et al.The enantiomeric distributions of volatile constituents in different tea cultivars[J]. Food Chemistry, 2018, 265: 329-336.
[14] Shao C Y, Zhang Y, Lü H P, et al.Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness[J]. Food Chemistry, 2022, 388: 132969. doi: 10.1016/j.foodchem.2022.132969.
[15] 周巧仪, 曾伟霞, 张建中, 等. 客家炒青绿茶品质成分及香气特征分析[J]. 现代食品科技, 2023, 39(11): 242-252.
Zhou Q Y, Zeng W X, Zhang J Z, et al.Analysis on quality components and aroma characteristics of hakka roasted green tea[J]. Modern Food Science and Technology, 2023, 39(11): 242-252.
[16] 穆兵, 吕海鹏, 朱荫, 等. 茶叶中挥发性成分对映异构体研究进展[J]. 食品科学, 2018, 39(11): 309-315.
Mu B, Lü H P, Zhu Y, et al.Recent progress in research on enantiomers of volatile compounds in tea[J]. Food Science, 2018, 39(11): 309-315.
[17] 夏红玲, 苗爱清, 陈维, 等. 闷黄对黄茶香气特征及关键香气化合物的影响[J]. 食品工业科技, 2023, 44(7): 28-37.
Xia H L, Miao A Q, Chen W, et al.Effects of sealed yellowing on aroma characteristic and key aroma compounds of yellow tea[J]. Science and Technology of Food Industry, 2023, 44(7): 28-37.
[18] 戴梦茹, 李春, 李娆娆, 等. 基于糖谱法的地黄药材及饮片定性定量分析[J]. 中国实验方剂学杂志, 2024, 30(18): 157-163.
Dai M R, Li C, Li R R, et al.Qualitative and quantitative analysis of rehmanniae radix and its decoction pieces based on sugar spectrum[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(18): 157-163.
[19] 尹洪旭, 杨艳芹, 姚月凤, 等. 栗香绿茶香气萃取方法优化及其芳香成分分析[J]. 茶叶科学, 2018, 38(5): 518-526.
Yin H X, Yang Y Q, Yao Y F, et al.Optimization of aroma extraction and aroma component analysis on chestnut-like green tea[J]. Journal of Tea Science, 2018, 38(5): 518-526.
[20] 严寒, 朱荫, 穆兵, 等. 不同花色福鼎白茶中挥发性萜类化合物的对映异构体分布[J]. 食品科学, 2019, 40(24): 193-200.
Yan H, Zhu Y, Mu B, et al.Enantiomeric distribution of volatile terpenoids I different types of Fuding white teas[J]. Food Science, 2019, 40(24): 193-200.
[21] Yang T, Zhu Y, Shao C, et al.Enantiomeric analysis of linalool in teas using headspace solid-phase microextraction with chiral gas chromatography[J]. Industrial Crops and Products, 2016, 83: 17-23.
[22] 陈丽, 叶玉龙, 王春燕, 等. 茶叶中类胡萝卜素香气前体研究进展[J]. 食品与发酵工业, 2019, 45(5): 266-273.
Chen L, Ye Y L, Wang C Y, et al.Research progress on carotenoid aroma precursors in tea[J]. Food and Fermentation Industries, 2019, 45(5): 266-273.
[23] Ma J, Wang Y, Li J, et al.Aroma formation mechanism by the drying step during Congou black tea processing: analyses by HP-SPME and SAFE with GC-MS[J]. LWT, 2024, 198: 116019. doi: 10.1016/j.lwt.2024.116019.
[24] Wang M Q, Ma W J, Shi J, et al.Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International, 2020, 130: 108908. doi: 10.1016/j.foodres.2019.108908.
[25] Gan S, Chen Y, Zhao L, et al.Characterization of the aroma-active compounds in Xiaokeng green tea by three pretreatment methods combined with gas chromatography-olfactometry (GC-O)[J]. Food Research International, 2024, 187: 114359. doi: 10.1016/j.foodres.2024.114359.
[26] Zhang J, Xia D, Li T, et al.Effects of different over-fired drying methods on the aroma of Lu'an Guapian tea[J]. Food Research International, 2023, 173(1): 113224. doi: 10.1016/j.foodres.2023.113224.
[27] Zhang Y, Zhang Y H, Yan H, et al.Enantiomeric separation and precise quantification of chiral volatiles in Wuyi rock teas using an efficient enantioselective GC×GC-TOFMS approach[J]. Food Research International, 2023, 169: 112891. doi: 10.1016/j.foodres.2023.112891.
文章导航

/