[1] Fang X, Liu Y N, Xiao J Y, et al.GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea[J]. Food Chemistry, 2023, 410: 135396. doi: 10.1016/j.foodchem.2023.135396.
[2] Qi D D, Shi Y L, Lu M, et al.Effect of withering/spreading on the physical and chemical properties of tea: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(5): e70010. doi: 10.1111/1541-4337.70010.
[3] Shan X J, Yu Q Y, Chen L, et al.Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non-targeted metabolomics[J]. Frontiers in Nutrition, 2023, 10: 1104926. doi: 10.3389/fnut.2023.1104926.
[4] Ye Y L, Yan J N, Cui J L, et al.Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering[J]. Journal of Food Composition and Analysis, 2018, 66: 98-108.
[5] Qiao D H, Zhu J Y, Mi X Z, et al.Effects of withering time of fresh leaves on the formation of flavor quality of Taiping Houkui tea[J]. LWT, 2023, 182: 114833. doi: 10.1016/j.lwt.2023.114833.
[6] 吴秋儿, 唐良生, 王则金. 乌龙茶机械萎凋工艺参数[J]. 茶叶科学, 1995, 15(1): 39-42.
Wu Q E, Tang L S, Wang Z J.Technical parameters of mechanical withering for Oolong tea[J]. Journal of Tea Science, 1995, 15(1): 39-42.
[7] Tomlins K I, Mashingaidze A.Influence of withering, including leaf handling, on the manufacturing and quality of black teas: a review[J]. Food Chemistry, 1997, 60(4): 573-580.
[8] Chen Q C, Shi J, Mu B, et al.Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412.
[9] Zhou Y H, Luo F, Gong X J, et al.Targeted metabolomics and DIA proteomics-based analyses of proteinaceous amino acids and driving proteins in black tea during withering[J]. LWT, 2022, 165: 113701. doi: 10.1016/j.lwt.2022.113701.
[10] 滑金杰, 袁海波, 江用文, 等. 萎凋过程鲜叶理化特性变化及其调控技术研究进展[J]. 茶叶科学, 2013, 33(5): 465-472.
Hua J J, Yuan H B, Jiang Y W, et al.A review on the regulation technique of withering process and the change in physical and chemical properties of leaves[J]. Journal of Tea Science, 2013, 33(5): 465-472.
[11] 刘财国, 于文涛, 樊晓静, 等. 白茶萎凋过程叶片微形态动态变化规律[J]. 茶叶学报, 2021, 62(2): 73-77.
Liu C G, Yu W T, Fan X J, et al.Changes in foliar micromorphology of white tea during withering[J]. Acta Tea Sinica, 2021, 62(2): 73-77.
[12] Xiang L H, Zhu C, Qian J J, et al.Positive contributions of the stem to the formation of white tea quality-related metabolites during withering[J]. Food Chemistry, 2024, 449: 139173. doi: 10.1016/j.foodchem.2024.139173.
[13] Shao C Y, Zhang C Y, Lü Z D, et al.Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis)[J]. Scientia Horticulturae, 2021, 281: 109984. doi: 10.1016/j.scienta.2021.109984.
[14] Zeng L T, Wang X W, Liao Y Y, et al.Formation of and changes in phytohormone levels in response to stress during the manufacturing process of Oolong tea (Camellia sinensis)[J]. Postharvest Biology and Technology, 2019, 157: 110974. doi: 10.1016/j.postharvbio.2019.110974.
[15] Gu D C, Yang J, Wu S H, et al.Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2021, 69(3): 1039-1048.
[16] Cheng H Y, Wu W, Liu X F, et al. Transcription factor CsWRKY40 regulates L-theanine hydrolysis by activating the CsPDX2.1 promoter in tea leaves during withering [J]. Horticulture Research, 2022, 9: uhac025. doi: 10.1093/hr/uhac025.
[17] Chen Y, Zeng L, Liao Y, et al.Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process[J]. Foods, 2020, 9(1): 66. doi: 10.3390/foods9010066.
[18] 陈佳佳, 朱陈松, 朱文伟, 等. 白茶萎凋过程中氨基酸类物质代谢分析[J]. 茶叶科学, 2021, 41(4): 471-481.
Chen J J, Zhu C S, Zhu W W, et al.Analysis of the metabolism of amino acids during the withering of white tea[J]. Journal of Tea Science, 2021, 41(4): 471-481.
[19] Zhou J T, Yu X L, He C, et al.Withering degree affects flavor and biological activity of black tea: a non-targeted metabolomics approach[J]. LWT, 2020, 130: 109535. doi: 10.1016/j.lwt.2020.109535.
[20] Yu P H, Huang H, Zhao X, et al.Dynamic variation of amino acid content during black tea processing: a review[J]. Food Reviews International, 2023, 39(7): 3970-3983.
[21] Zhou C Z, Zhu C, Li X Z, et al.Transcriptome and phytochemical analyses reveal the roles of characteristic metabolites in the taste formation of white tea during the withering process[J]. Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[22] Deng X M, Shang H, Chen J J, et al.Metabolomics combined with proteomics provide a novel interpretation of the changes in flavonoid glycosides during white tea processing[J]. Foods, 2022, 11(9): 1226. doi: 10.3390/foods11091226.
[23] Wang Z H, Gao C X, Zhao J M, et al.The metabolic mechanism of flavonoid glycosides and their contribution to the flavor evolution of white tea during prolonged withering[J]. Food Chemistry, 2024, 439: 138133. doi: 10.1016/j.foodchem.2023.138133.
[24] Wang Y, Zheng P C, Liu P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry, 2019, 272: 313-322.
[25] Zeng L T, Watanabe N, Yang Z Y.Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.
[26] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[27] Zhou Y, Zeng L T, Gui J D, et al.Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis)[J]. Food Research International, 2017, 96: 206-214.
[28] Pu X J, Dong X M, Li Q, et al.An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics[J]. Journal of Integrative Plant Biology, 2021, 63(7): 1211-1226.
[29] Wang J M, Wu B, Zhang N, et al.Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-Ionone formation during tea (Camellia sinensis) withering[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.
[30] 滑金杰, 江用文, 袁海波, 等. 萎凋温度对鲜叶物性及呼吸特性的影响[J]. 中国农学通报, 2014, 30(18): 291-296.
Hua J J, Jiang Y Y, Yuan H B, et al.The effect of withering temperature on physical characteristics and respiration of tea fresh leaves[J]. Chinese Agricultural Science Bulletin, 2014, 30(18): 291-296.
[31] 滑金杰, 袁海波, 王伟伟, 等. 萎凋温度对鲜叶主要生化成分和酶活动态变化规律的影响[J]. 茶叶科学, 2015, 35(1): 73-81.
Hua J J, Yuan H B, Wang W W, et al.Effect of withering temperature on dynamic changes of main biochemical components and enzymatic activity of tea fresh leaves[J]. Journal of Tea Science, 2015, 35(1): 73-81.
[32] 张湘琳, 凌智辉, 胡维霞, 等. 不同温度热风萎凋对红茶萎凋叶及成茶品质的影响[J]. 茶叶科学, 2024, 44(3): 483-492.
Zhang X L, Ling Z H, Hu W X, et al.Effects of different temperature hot air withering on withered leaves and tea quality of black tea[J]. Journal of Tea Science, 2024, 44(3): 483-492.
[33] 刘洋, 陈勤操, 刘德春, 等. 茶叶多酚氧化酶三相分离纯化及酶学性质研究[J]. 食品工业科技, 2022, 43(9): 119-124.
Liu Y, Chen Q C, Liu D C, et al.Purification of polyphenol oxidase from tea leaf by three phase partitioning and enzymatic properties[J]. Science and Technology of Food Industry, 2022, 43(9): 119-124.
[34] 邓仕彬, 方舒娜, 林金来. 萎凋工艺对福鼎白茶品质影响研究[J]. 食品研究与开发, 2021, 42(13): 77-83.
Deng S B, Fang S N, Lin J L.Effect of withering process on the quality of Fuding white tea[J]. Food Research and Development, 2021, 42(13): 77-83.
[35] 潘玉华, 黄先洲, 周寒松. 人工调控萎凋室温湿度的白茶加工工艺探究[J]. 湖北农业科学, 2013, 52(5): 1144-1148.
Pan Y H, Huang X Z, Zhou H S.Study on white tea processing technology by artificial control of temperature and humidity during withering[J]. Hubei Agricultural Sciences, 2013, 52(5): 1144-1148.
[36] 黄藩, 王迎春, 叶玉龙, 等. 变温萎凋技术对贡眉白茶品质的影响[J]. 中国农学通报, 2022, 38(19): 159-164.
Huang F, Wang Y C, Ye Y L, et al.Effects of temperature-changing withering technology on the quality of gongmei white tea[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 159-164.
[37] 高远, 高建华, 程红霞, 等. 一种热风循环均料式茶叶萎凋装置: ZL202410063323.9 [P].2024-03-22[2024-10-16].
Gao Y, Gao J H, Cheng H X, et al. A hot air circulation and even distribution tea withering device: ZL202410063323.9 [P].2024-03-22[2024-10-16].
[38] 游芳宁, 邓慧莉, 胡娟, 等. 不同温度LED光萎凋对铁观音MEP上游关键基因和香气的影响[J]. 中国农业科学, 2020, 53(2): 346-356.
You F N, Deng H L, Hu J, et al.Effects of LED light withering at different temperatures on expression of key genes in the upstream of MEP and formation of volatiles in tieguanyin tea[J]. Scientia Agricultura Sinica, 2020, 53(2): 346-356.
[39] Feng J, Zhuang J Y, Chen Q L, et al.The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea: a metabolomic study[J]. Food Chemistry, 2024, 447: 139080. doi: 10.1016/j.foodchem.2024.139080.
[40] 吴转容. 日光萎凋对红茶品质的影响[D]. 武汉: 华中农业大学, 2023.
Wu Z R.Effect of sun withering on the quality of black tea [D]. Wuhan: Huazhong Agricultural University, 2023.
[41] Deng H L, Chen S S, Zhou Z W, et al.Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of Oolong tea (Camellia sinensis)[J]. Food Research International, 2020, 137: 109347. doi: 10.1016/j.foodres.2020.109347.
[42] Aaqil M, Peng C X, Kamal A, et al.Tea harvesting and processing techniques and its effect on phytochemical profile and final quality of black tea: a review[J]. Foods, 2023, 12(24): 4467. doi: 10.3390/foods12244467.
[43] 田野. 低温对茶叶品质及其理化成分的影响[D]. 杭州: 中国计量学院, 2015.
Tian Y.Effect on tea quality and chemical compositions at low temperature [D]. Hangzhou: China Jiliang University, 2015.
[44] Yu X L, Li Y C, He C, et al.Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity[J]. Food Chemistry, 2020, 327: 126992. doi: 10.1016/j.foodchem.2020.126992.
[45] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments[J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10624-10636.
[46] 亓俊然, 张龙雪, 陈新颖, 等. 鲜叶萎凋前期低温处理对金萱白茶品质的影响[J]. 食品工业科技, 2022, 43(18): 63-71.
Qi J R, Zhang L X, Chen X Y, et al.Effect of low temperature treatment on the quality of Jinxuan white tea in the early stage of fresh leaves withering[J]. Science and Technology of Food Industry, 2022, 43(18): 63-71.
[47] 吴亮宇, 黄旭建, 林金科, 等. 一种含有高保留率EGCG的乌龙茶初制加工方法: ZL201910514771.5[P].2021-09-24[2024-10-16].
Wu L Y, Huang X J, Lin J K, et al. A method for initial processing of Oolong tea with high retention rate of EGCG: ZL201910514771.5 [P].2021-09-24[2024-10-16].
[48] 陆安霞. 低温处理对茶树鲜叶物质代谢及其所制工夫红茶品质的影响[D]. 重庆: 西南大学, 2020.
Lu A X.Effects of low temperature on the metabolism of tea fresh leaves and the quality of congou black tea [D]. Chongqing: Southwest University, 2020.
[49] 亓俊然. 鲜叶低温处理对金萱白茶品质的影响研究[D]. 泰安: 山东农业大学, 2022.
Qi J R.Effect of Low temperature treatment of fresh leaves on the quality of Jinxuan white tea [D]. Taian: Shandong Agricultural University, 2022.
[50] 虞昕磊. 鲜叶摊放方式对绿茶色、香、味品质成分代谢的影响研究[D]. 武汉: 华中农业大学, 2020.
Yu X L.Effects of different withering methods on components metabolism related to color aroma and taste quality in green tea [D]. Wuhan: Huazhong Agricultural University, 2020.
[51] 谭艳娉, 于学领, 陈倩莲, 等. 采前和采后胁迫对茶叶品质的影响研究进展[J]. 亚热带农业研究, 2022, 18(3): 184-191.
Tan Y P, Yu X L, Chen Q L, et al.Progress on effects of pre- and post-harvest stress on tea quality[J]. Subtropical Agriculture Research, 2022, 18(3): 184-191.
[52] Roeber V M, Bajaj I, Rohde M, et al.Light acts as a stressor and influences abiotic and biotic stress responses in plants[J]. Plant, Cell & Environment, 2021, 44(3): 645-664.
[53] 何华锋, 金雨青, 褚飞洋, 等. 基于单因素和响应面优化的工夫红茶单色光补偿萎凋品质分析[J]. 科学技术与工程, 2018, 18(22): 112-120.
He H F, Jin Y Q, Chu F Y, et al.Quality analysis of congou black tea with monochromatic light compensatory withering based on single factor and response surface optimization[J]. Science Technology and Engineering, 2018, 18(22): 112-120.
[54] Wu H T, Sheng C Y, Lu M X, et al.Identification of the causes of aroma differences in white tea under different withering methods by targeted metabolomics[J]. Food Bioscience, 2024, 59: 104020. doi: 10.1016/j.fbio.2024.104020.
[55] Lin J Z, Liu F, Zhou X F, et al.Effect of red light on the composition of metabolites in tea leaves during the withering process using untargeted metabolomics[J]. Journal of the Science of Food and Agriculture, 2022, 102(4): 1628-1639.
[56] 袁林颖, 杨娟, 钟应富, 等. LED光质萎凋对绿茶品质的影响研究[J]. 南方农业, 2016, 10(16): 90-92.
Yuan L Y, Yang J, Zhong Y F, et al.Effect of LED withering on green tea quality[J]. South China Agriculture, 2016, 10(16): 90-92.
[57] 游鸿婷. 人工光源干燥对晒青绿茶品质影响研究[D]. 杭州: 浙江大学, 2020.
You H T.Study on effect of drying processing with artificial light on the quality of sundried green tea [D]. Hangzhou: Zhejiang University, 2020.
[58] 盖淑杰, 王奕雄, 李兰, 等. 茶树生长光调控研究进展[J]. 茶叶科学, 2022, 42(6): 753-767.
Gai S J, Wang Y X, Li L, et al.Research progress of tea plant (Camellia sinensis) growth under light regulation[J]. Journal of Tea Science, 2022, 42(6): 753-767.
[59] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003.
[60] Huang W J, Lu G F, Deng W W, et al.Effects of different withering methods on the taste of Keemun black tea[J]. LWT, 2022, 166: 113791. doi: 10.1016/j.lwt.2022.113791.
[61] 刘家泉, 赖少希, 瞿文, 等. 日光萎凋对清饮型红茶品质的影响研究[J]. 广东茶业, 2012(5): 23-24.
Liu J Q, Lai S X, Qu W, et al.Study on the effect of sun withering on the quality of black tea[J]. Guangdong Tea Industry, 2012(5): 23-24.
[62] Huang W J, Fang S M, Su Y L, et al.Insights into the mechanism of different withering methods on flavor formation of black tea based on target metabolomics and transcriptomics[J]. LWT, 2023, 189: 115537. doi: 10.1016/j.lwt.2023.115537.
[63] 曹诗雨, 吴转容, 廖凯丽, 等. 日光萎凋对不同鲜叶嫩度与茶树品种加工红茶品质的影响[J]. 华中农业大学学报, 2024, 43(6): 270-281.
Cao S Y, Wu Z R, Liao K L, et al.Effects of sun withering on the quality of black tea of different fresh leaf tenderness and tea plant cultivars[J]. Journal of Huazhong Agricultural University, 2024, 43(6): 270-281.
[64] Jia X L, Zhang Q, Chen M H, et al.Analysis of the effect of different withering methods on tea quality based on transcriptomics and metabolomics[J]. Frontiers in Plant Science, 2023, 14: 1235687. doi: 10.3389/fpls.2023.1235687.
[65] 周玲, 王庆华, 彭磊, 等. 一种大叶种白茶及其加工方法: ZL202310292475.1[P].2023-07-14[2024-10-16].
Zhou L, Wang Q H, Peng L, et al. A large-leaf white tea and its processing method: ZL202310292475.1 [P].2023-07-14[2024-10-16].
[66] 陈寿松. 乌龙茶光萎凋过程香气代谢的分子机制及品质调控研究[D]. 福州: 福建农林大学, 2017.
Chen S S.Study on molecular mechanism of volatiles metabolism and quality regulation during light withering process in Oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[67] Zou L, Sheng C Y, Xia D Z, et al.Mechanism of aroma formation in white tea treated with solar withering[J]. Food Research International, 2024, 194: 114917. doi: 10.1016/j.foodres.2024.114917.
[68] 乔小燕, 操君喜, 吴华玲, 等. 不同萎凋方式和碰青工艺对红茶挥发性成分的影响[J]. 热带作物学报, 2017, 38(8): 1572-1577.
Qiao X Y, Cao J X, Wu H L, et al.Effects of different withering measures and peng-qing treatments on volatile flavor compounds of black tea[J]. Chinese Journal of Tropical Crops, 2017, 38(8): 1572-1577.
[69] Zhu C, Zhang S T, Fu H F, et al.Transcriptome and phytochemical analyses provide new insights into long non-coding rnas modulating characteristic secondary metabolites of Oolong tea (Camellia sinensis) in solar-withering[J]. Frontiers in Plant Science, 2019, 10: 1638. doi: 10.3389/fpls.2019.01638.
[70] 朱晨, 张舒婷, 周承哲, 等. 萎凋处理对乌龙茶风味品质形成的转录组分析[J]. 生物工程学报, 2022, 38(1): 303-327.
Zhu C, Zhang S T, Zhou C Z, et al.Transcriptome analysis reveals the role of withering treatment in flavor formation of Oolong tea (Camellia sinensis)[J]. Chinese Journal of Biotechnology, 2022, 38(1): 303-327.
[71] Wu H T, Chen Y Y, Feng W Z, et al.Effects of three different withering treatments on the aroma of white tea[J]. Foods, 2022, 11(16): 2502. doi: 10.3390/foods11162502.
[72] Wang Y H, Li C X, Lin J Q, et al.The impact of different withering approaches on the metabolism of flavor compounds in Oolong tea leaves[J]. Foods, 2022, 11(22): 3601. doi: 10.3390/foods11223601.
[73] Contreras-Avilés W, Heuvelink E, Marcelis L F M, et al. Ménage à trois: light, terpenoids, and quality of plants[J]. Trends in Plant Science, 2024, 29(5): 572-588.
[74] 夏涛. 制茶学[M]. 3版. 北京: 中国农业出版社, 2016.
Xia T.Tea processing [M]. 3rd ed. Beijing: China Agriculture Press, 2016.
[75] Ai Z Y, Zhang B B, Chen Y Q, et al.Impact of light irradiation on black tea quality during withering[J]. Journal of Food Science and Technology, 2017, 54(5): 1212-1227.
[76] 李军营, 徐超华, 崔明昆, 等. 不同光质对烟草叶片生长及叶绿素荧光参数的影响[J]. 江苏农业科学, 2015, 43(11): 140-145.
Li J Y, Xu C H, Cui M K, et al.Effects of different light quality on growth and chlorophyll fluorescence parameters of tobacco leaves[J]. Jiangsu Agricultural Sciences, 2015, 43(11): 140-145.
[77] 邢泽南, 张丹, 李薇, 等. 光质对油葵芽苗菜生长和品质的影响[J]. 南京农业大学学报, 2012, 35(3): 47-51.
Xing Z N, Zhang D, Li W, et al.Effects of light quality on the growth and quality of Helianthus annuus sprouts[J]. Journal of Nanjing Agricultural University, 2012, 35(3): 47-51.
[78] 陈寿松, 金心怡, 林宏政, 等. 乌龙茶LED补光萎凋品质特性研究[J]. 农业机械学报, 2016, 47(7): 282-289.
Chen S S, Jin X Y, Lin H Z, et al.Research on quality characteristic using led as supplementary lighting during withering process in Oolong tea[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 282-289.
[79] 罗红玉, 王奕, 吴全, 等. 光质萎凋对不同茶树品种红茶品质的影响[J]. 食品工业科技, 2021, 42(10): 15-21.
Luo H Y, Wang Y, Wu Q, et al.Effect of withering light-wave bands on different varieties black tea quality[J]. Science and Technology of Food Industry, 2021, 42(10): 15-21.
[80] 倪德江, 胡兴明, 张德, 等. 一种去除夏秋季利川红苦涩味的方法: ZL202410981014.X[P].2024-10-01[2024-10-16].
Ni D J, Hu X M, Zhang D, et al. A method for removing the bitter taste of Lichuan black tea in summer and autumn: ZL202410981014.X [P].2024-10-01[2024-10-16].
[81] Tian S Y, Zhou H, Yao X Z, et al.Finding the optimal light quality and intensity for the withering process of Fuding Dabai tea and its impact on quality formation[J]. LWT, 2024, 193: 115713. doi: 10.1016/j.lwt.2023.115713.
[82] Xie J L, Wang Q W, Hu J J, et al.Uncovering the effects of spreading under different light irradiation on the volatile and non-volatile metabolites of green tea by intelligent sensory technologies integrated with targeted and non-targeted metabolomics analyses[J]. Food Chemistry, 2025, 463: 141482. doi: 10.1016/j.foodchem.2024.141482.
[83] Collings E R, Alamar M C, Márquez M B, et al.Improving the tea withering process using ethylene or UV-C[J]. Journal of Agricultural and Food Chemistry, 2021, 69(45): 13596-13607.
[84] Hua J J, Zhu X Z, Ouyang W, et al.Non-target and target quantitative metabolomics with quantitative aroma evaluation reveal the influence mechanism of withering light quality on tea aroma and volatile metabolites evolution[J]. Food Research International, 2024, 192: 114773. doi: 10.1016/j.foodres.2024.114773.
[85] 项丽慧, 林馥茗, 孙威江, 等. LED黄光对工夫红茶萎凋过程香气相关酶基因表达及活性影响[J]. 茶叶科学, 2015, 35(6): 559-566.
Xiang L H, Lin F M, Sun W J, et al.Effects of LED yellow light on the expression levels of aroma related genes and the enzyme activity in withering process of congou black tea[J]. Journal of Tea Science, 2015, 35(6): 559-566.
[86] 李玉川, 陈玉琼, 秦慕雪, 等. 不同光质对夏秋红茶萎凋叶挥发性成分的影响[J]. 食品安全质量检测学报, 2022, 13(14): 4415-4422.
Li Y C, Chen Y Q, Qin M X, et al.Effects of different light on the volatile components of withering leaves of summer-autumn black tea[J]. Journal of Food Safety and Quality, 2022, 13(14): 4415-4422.
[87] Li Y C, He C, Yu X L, et al.Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering[J]. LWT, 2022, 154: 112597. doi: 10.1016/j.lwt.2021.112597.
[88] Wang X H, Cao J J, Cheng X, et al.UV-B application during the aeration process improves the aroma characteristics of Oolong tea[J]. Food Chemistry, 2024, 435: 137585. doi: 10.1016/j.foodchem.2023.137585.
[89] Ali S, Tyagi A, Bae H.ROS interplay between plant growth and stress biology: challenges and future perspectives[J]. Plant Physiology and Biochemistry, 2023, 203: 108032. doi: 10.1016/j.plaphy.2023.108032.
[90] 郝志龙, 林宏政, 徐邢燕, 等. 采后茶青叶对振动力胁迫的生理响应[J]. 食品科学, 2023, 44(1): 30-37.
Hao Z L, Lin H Z, Xu X Y, et al.Physiological response of postharvest tea leaves under vibration stress[J]. Food Science, 2023, 44(1): 30-37.
[91] Zeng L T, Zhou X C, Su X G, et al.Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food Science & Technology, 2020, 106: 242-253.
[92] Wu L Y, Wang Y H, Liu S H, et al.The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: a case study of Zhangping Shuixian tea[J]. Food Chemistry, 2022, 391: 133192. doi: 10.1016/j.foodchem.2022.133192.
[93] Zeng L T, Zhou Y, Gui J D, et al.Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019.
[94] Li J L, Zeng L T, Liao Y Y, et al.Influence of chloroplast defects on formation of jasmonic acid and characteristic aroma compounds in tea (Camellia sinensis) leaves exposed to postharvest stresses[J]. International Journal of Molecular Sciences, 2019, 20(5): 1044. doi: 10.3390/ijms20051044.
[95] Zeng L T, Zhou Y, Fu X M, et al.Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses[J]. Journal of Agricultural and Food Chemistry, 2018, 66(15): 3899-3909.
[96] 黄福平, 陈伟, 陈荣冰, 等. 乌龙茶做青过程脂质过氧化作用及其对茶叶品质的影响[J]. 茶叶科学, 2002, 22(2): 147-151.
Huang F P, Chen W, Chen R B, et al.Lipid peroxidation induced by zuoqing process of oolong tea and its effect on tea quality[J]. Journal of Tea Science, 2002, 22(2): 147-151.
[97] 吴晴阳, 周子维, 武清扬, 等. 乌龙茶加工过程中α-法呢烯的形成关键调控基因的筛选与表达分析[J]. 食品工业科技, 2020, 41(15): 135-142.
Wu Q Y, Zhou Z W, Wu Q Y, et al.Screening and expression analysis of key regulator gene associated with α-farnesene formation during manufacturing process of oolong tea[J]. Science and Technology of Food Industry, 2020, 41(15): 135-142.
[98] Li J, Hua J J, Zhou Q H, et al.Comprehensive lipidome-wide profiling reveals dynamic changes of tea lipids during manufacturing process of black tea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10131-10140.
[99] Wang J J, Qu L C, Yu Z M, et al.Targeted quantitative metabolomic and flavor objective quantification technique reveal the impact mechanism of shaking on black tea quality and non-volatile metabolites[J]. Food Chemistry, 2024, 458: 140226. doi: 10.1016/j.foodchem.2024.140226.
[100] Wang J J, Ouyang W, Zhu X Z, et al.Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea[J]. Food Chemistry: X, 2023, 20: 101007. doi: 10.1016/j.fochx.2023.101007.
[101] Xue J J, Liu P P, Yin J F, et al.Dynamic changes in volatile compounds of shaken black tea during its manufacture by GC×GC-TOFMS and multivariate data analysis[J]. Foods, 2022, 11(9): 1228. doi: 10.3390/foods11091228.
[102] 黄红缨, 张艳, 王政, 等. 一种可提升红茶香味的红茶制备方法: ZL202410073829.8[P].2024-03-22[2024-10-16].
Huang H Y, Zhang Y, Wang Z, et al. A method for making black tea with enhanced aroma: ZL202410073829.8 [P].2024-03-22[2024-10-16].
[103] Lin J Z, Tu Z, Zhu H K, et al.Effects of shaking and withering processes on the aroma qualities of black tea[J]. Horticulturae, 2022, 8(6): 549. doi: 10.3390/horticulturae8060549.
[104] 叶玉龙, 罗凡, 胡智臻, 等. 振动式茶叶萎凋装置: ZL202410945393.7[P].2024-10-29[2024-10-16].
Ye Y L, Luo F, Hu Z Z, et al. Vibrating tea withering device: ZL202410945393.7 [P].2024-10-29[2024-10-16].
[105] Paik I, Huq E.Plant photoreceptors: multi-functional sensory proteins and their signaling networks[J]. Seminars in Cell & Developmental Biology, 2019, 92: 114-121.
[106] Viczián A, Klose C, Ádám É, et al.New insights of red light-induced development[J]. Plant, Cell & Environment, 2017, 40(11): 2457-2468.
[107] Ali S, Tyagi A, Bae H.ROS interplay between plant growth and stress biology: challenges and future perspectives[J]. Plant Physiology and Biochemistry, 2023, 203: 108032. doi: 10.1016/j.plaphy.2023.108032.