欢迎访问《茶叶科学》,今天是
研究报告

茶树DREB基因的生信分析及其调控CsPOD3的抗旱机制

  • 徐容 ,
  • 邓智英 ,
  • 邵陈禹 ,
  • 罗玉麒 ,
  • 仇舒琪 ,
  • 王聪 ,
  • 周玲红 ,
  • 刘仲华 ,
  • 沈程文
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.郴州市农业科学研究所,湖南 郴州 423042

收稿日期: 2024-09-24

  修回日期: 2024-11-04

  网络出版日期: 2025-03-03

Bioinformatic Analysis of DREB Genes and Regulation of CsPOD3 on Drought Tolerance Mechanisms in Camellia sinensis

  • XU Rong ,
  • DENG Zhiying ,
  • SHAO Chenyu ,
  • LUO Yuqi ,
  • QIU Shuqi ,
  • WANG Cong ,
  • ZHOU Linghong ,
  • LIU Zhonghua ,
  • SHEN Chengwen
Expand
  • 1. Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. Chenzhou Institute of Agricultural Sciences, Chenzhou 423042, China

Received date: 2024-09-24

  Revised date: 2024-11-04

  Online published: 2025-03-03

摘要

基于课题组前期的转录组数据筛选到CsDREB11CsDREB15CsDREB25等基因。通过RT-qPCR验证,它们均受干旱诱导表达。从进化树、蛋白理化性质、亲/疏水性、二级和三级结构、亚细胞定位等方面进行预测与分析。结果表明,CsDREB11CsDREB15CsDREB25都与狭叶油茶(Camellia lanceoleosa)的亲缘性最为密切,都属于不稳定的亲水性蛋白。二级/三级结构均以无规则卷曲和α-螺旋为主,其亚细胞定位均位于细胞核中。课题组前期的研究发现CsDREB25CsPOD3均在干旱下高表达且呈显著相关,推测CsDREB25CsPOD3存在相互作用关系。通过酵母单杂交验证(Y1H)和双荧光素酶报告基因检测(DLA)以及双荧光素酶互补成像(LCI)等方法试验验证了CsDREB25能正向调控CsPOD3的表达,提高POD的活性,清除过多活性氧,提高茶树的耐旱性。

本文引用格式

徐容 , 邓智英 , 邵陈禹 , 罗玉麒 , 仇舒琪 , 王聪 , 周玲红 , 刘仲华 , 沈程文 . 茶树DREB基因的生信分析及其调控CsPOD3的抗旱机制[J]. 茶叶科学, 2025 , 45(1) : 29 -42 . DOI: 10.13305/j.cnki.jts.2025.01.002

Abstract

Based on the previous transcriptome data of the research group, three genes, CsDREB11, CsDREB15, and CsDREB25, were screened. Verified by RT-qPCR, their expressions were induced by drought. The phylogenetic tree, physical and chemical properties, hydrophilicity/hydrophobicity, secondary and tertiary structures, and subcellular localization were predicted and analyzed. The results show that CsDREB11, CsDREB15, and CsDREB25 are most closely related to their homolog genes in Camellia lanceoleosa. They are all unstable hydrophilic proteins. Random coils and α-helices dominate the secondary/tertiary structures. Their subcellular localizations are located in the nucleus. The preliminary study of the subject found that both CsDREB25 and CsPOD3 were highly expressed and significantly correlated under drought conditions, suggesting that there was an interaction between them. Through Y1H, DLA, and LCI experiments, it was verified that CsDREB25 can positively regulate the expression of CsPOD3, increase the activity of POD, remove excessive reactive oxygen species, and improve the drought tolerance of tea plants.

参考文献

[1] 龙露, 汤丹丹, 陈玮, 等. 茶树STOP基因家族的鉴定及表达模式分析[J]. 茶叶科学, 2024, 44(3): 386-398.
Long L, Tang D D, Chen W, et al.Identification and expression pattern analysis of STOP gene family in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2024, 44(3): 386-398.
[2] 虞昕磊, 艾于杰, 曲凤凤, 等. 代谢组学在研究茶叶品质形成中的应用[J]. 茶叶科学, 2018, 38(1): 20-32.
Yu X L, Ai Y J, Qu F F, et al.Metabolomics application in the study of tea quality formation[J]. Journal of Tea Science, 2018, 38(1): 20-32.
[3] Chen W, Zheng C, Yao M, et al.The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants[J]. Beverage Plant Research, 2021, 1(1): 1-11.
[4] Li J Y, Ren J J, Lei X Y, et al.CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought[J]. Cell Reports, 2024, 43(4): 113987. doi: 10.1016/j.celrep. 2024.
113987.
[5] 陈鑫, 邬晓龙, 刘升锐, 等. 干旱胁迫下AMF对茶树光合特性及其基因表达的影响[J]. 园艺学报, 2024, 51(10): 2358-2370.
Chen X, Wu X L, Liu S R, et al.Effects of AMF on photosynthetic characteristics and gene expressions of tea plants under drought stress[J]. Horticultural Plant Journal, 2024, 51(10): 2358-2370.
[6] Zhang M, Liu Y H, Cai H Y, et al.The bZIP transcription factor GmbZIP15 negatively regulates salt and drought-stress responses in soybeans[J]. International Journal of Molecular Sciences, 2020, 21(20): 7778. doi: 10.3390/ijms21207778.
[7] Wang H Y, Wang H L, Shao H B, et al.Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016, 7: 67. doi: 10.3389/fpls.2016.00067.
[8] Zhou H, Jia J, Kong D, et al.Genome-wide identification and analysis of the DREB genes and their expression profiles under abiotic stresses in Chinese jujube (Ziziphus jujuba Mill)[J]. Journal of Forestry Research, 2019, 30(4): 1277-1287.
[9] 刘志薇, 熊洋洋, 李彤, 等. 茶树转录因子基因CsDREB-A4的克隆与温度胁迫响应的分析[J]. 茶叶科学, 2015, 35(1): 24-34.
Liu Z W, Xiong Y Y, Li T, et al.The cloning of transcription factor gene CsDREB-A4 and the response to temperature stress in Camellia sinensis.[J]. Journal of Tea Science, 2015, 35(1): 24-34.
[10] Sakuma Y, Liu Q, Dubouzet J G, et al.DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009.
[11] Chen J H, Xia X L, Yin W L.A poplar DRE-binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress[J]. Gene, 2011, 483(1/2): 36-42.
[12] Li J B, Guo W, Meng H J, et al.Comprehensive analysis of AP2/ERF gene members in Acer truncatum B. and the positive regulator role of AtruDREB28 in drought tolerance[J]. Industrial Crops and Products, 2023, 200: 116837. doi: 10.1016/j.indcrop.2023.116837.
[13] 霍晨敏, 袁敏, 张宝文, 等. 野生稻CBF/DREB1转录因子的鉴定与生物信息学分析[J]. 草业学报, 2024, 33(6): 126-144.
Huo C M, Yuan M, Zhang B W, et al.Genome-wide identification and bioinformatics analysis of CBF/DREB1 transcription factors in wild rice[J]. Acta Prataculturae Sinica, 2024, 33(6): 126-144.
[14] 韩芳英, 胡昕, 王楠楠, 等. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98.
Han F Y, Hu X, Wang N N, et al.Research progress in response of DREBs to abiotic stress in plant[J]. Biotechnology Bulletin, 2023, 39(11): 86-98.
[15] Sarkar T, Thankappan R, Mishra G P, et al.Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants[J]. Physiology and Molecular Biology of Plants, 2019, 25(6): 1323-1334.
[16] Li X P, Tian A G, Luo G Z, et al.Soybean DRE-binding transcription factors that are responsive to abiotic stresses[J]. Theoretical and Applied Genetics, 2005, 110(8): 1355-1362.
[17] Chen M, Xu Z, Xia L, et al.Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.)[J]. Journal of Experimental Botany, 2009, 60(1): 121-135.
[18] Su J C, Song S L, Wang Y T, et al.Genome-wide identification and expression analysis of DREB family genes in cotton[J]. BMC Plant Biology, 2023, 23(1): 169. doi: 10.1186/s12870-023-04180-4.
[19] Hou Z H, Li Y L, Cheng Y H, et al.Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (glycine soja)[J]. Frontiers in Plant Science, 2022, 13: 821647. doi: 10.3389/fpls.2022.821647.
[20] Lim C Y, Kang K, Lim J, et al.RICE LONG GRAIN 3 delays dark-induced senescence by downregulating abscisic acid signaling and upregulating reactive oxygen species scavenging activity[J]. Plant Journal, 2024, 120(4): 1474-1487.
[21] Li C, Wang L, Su J, et al.A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum[J]. Journal of Experimental Botany, 2024, 75: 1479-1492.
[22] Li X L, Meng D, Li M J, et al.Transcription factors MhDREB2A/MhZAT10 play a role in drought and cold stress response crosstalk in apple[J]. Plant Physiology, 2023, 192: 2203-2220.
[23] Singh S, Chopperla R, Shingote P, et al.Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging[J]. Journal of Biotechnology, 2021, 336: 10-24.
[24] Li T, Huang Y, Ahmed Khadr, et al.DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes[J]. Environmental and Experimental Botany, 2020, 169: 103896. doi: 10.1016/j.envexpbot.2019.103896.
文章导航

/