欢迎访问《茶叶科学》,今天是
研究报告

茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响

  • 马雪晴 ,
  • 吴华伟 ,
  • 曹春霞 ,
  • 郑娇莉
展开
  • 1.长江大学生命科学学院,湖北 荆州 434023;
    2.湖北省生物农药工程研究中心,湖北 武汉 430064
马雪晴,女,硕士研究生,主要从事土壤微生物方面研究,mxq20222022@163.com。

收稿日期: 2024-09-04

  修回日期: 2024-11-05

  网络出版日期: 2025-03-03

基金资助

湖北省中央引导地方科技发展专项(2022BGE250)、湖北省重点研发计划项目(2023BBB148)

Screening of Phosphate-solubilizing Bacteria in the Rhizosphere of Tea Gardens and Their Effects on Tea Yield, Quality and Soil Properties

  • MA Xueqing ,
  • WU Huawei ,
  • CAO Chunxia ,
  • ZHENG Jiaoli
Expand
  • 1. College of Life Sciences, Yangtze University, Jingzhou 434023, China;
    2. Hubei Biological Pesticide Engineering Research Center, Wuhan 430064, China

Received date: 2024-09-04

  Revised date: 2024-11-05

  Online published: 2025-03-03

摘要

为了从茶园根际筛选具有产吲哚乙酸(IAA)能力的解磷菌,从湖北省英山县和恩施土家族苗族自治州茶园采集根际土壤,通过平板透明圈法筛选解磷菌,以解磷活性及产IAA能力为指标进行复筛,通过形态特征及16 S rDNA序列分析等方法对菌株进行鉴定并研究其促生特性。通过大田试验研究菌株对茶叶产量、品质及土壤性质等指标的影响。结果表明,从茶树根际土壤中筛选出的解磷菌DFP-24具有较好的产IAA能力,经鉴定为森林伯克霍尔德氏菌(Burkholderia arboris),同时菌株具有产铁载体、产1-氨基环丙烷-1-羧酸(ACC)脱氨酶和固氮等促生特性。大田试验表明,施加DFP-24菌株可提高茶芽密度,显著提高茶叶全磷含量,增加茶叶游离氨基酸含量,降低酚氨比,影响茶叶品质,同时还能改善土壤性质。综上所述,菌株DFP-24具有开发微生物菌肥的应用潜力,研究结果可为茶树专用根际促生菌肥的开发和应用提供菌种资源和理论依据。

本文引用格式

马雪晴 , 吴华伟 , 曹春霞 , 郑娇莉 . 茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响[J]. 茶叶科学, 2025 , 45(1) : 110 -120 . DOI: 10.13305/j.cnki.jts.2025.01.001

Abstract

The purpose of this study was to screen phosphate-solubilizing bacteria with the ability to produce indoleacetic acid (IAA) from the rhizosphere of tea gardens. The rhizosphere soil was collected from Yingshan Couty and Enshi Tujia and Miao Autonomous Prefecture tea gardens in Hubei Province, and the phosphate-solubilizing bacteria were screened by plate transparent circle method. The phosphate-solubilizing and IAA-producing abilities were used as indicators for re-screening. The strains were identified by morphological characteristics and 16 S rDNA sequence analysis, and their growth-promoting characteristics were studied. The effects of strains on tea yield, quality and soil properties were studied by field experiments. The results show that the phosphate-solubilizing bacterium DFP-24 screened from the rhizosphere soil of tea plants had good IAA-producing ability and was identified as Burkholderia arboris. At the same time, the strain had the growth-promoting characteristics such as siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production and nitrogen fixation ability. Field experiments show that the application of DFP-24 strain could increase the density of tea buds, significantly increase the total phosphorus content of tea, increase the free amino acid content of tea, reduce the ratio of phenol to ammonia, affect the quality of tea, and improve the soil properties. In summary, the strain DFP-24 has the application potential to develop microbial fertilizers. The research results could provide strain resources and theoretical basis for the development and application of rhizosphere growth-promoting bacterial fertilizer for tea plants.

参考文献

[1] 苏奇倩, 安福全, 于龙凤. 茶树对土壤锗的吸收及富集机制研究进展[J]. 河南农业科学, 2024, 53(4): 1-8.
Su Q Q, An F Q, Yu L F.Research progress on absorption of germanium in soils and its accumulation mechanism in Camellia sinensis[J]. Journal of Henan Agricultural Sciences, 2024, 53(4): 1-8.
[2] 王红娟, 毛迎新, 黄丹娟, 等. 湖北省茶园土壤养分和环境状况分析[J]. 湖北农业科学, 2021, 60(s2): 123-124, 128.
Wang H J, Mao Y X, Huang D J, et al.Analysis of tea plantation soil nutrients and quality status in Hubei province[J]. Hubei Agricultural Sciences, 2021, 60(s2): 123-124, 128.
[3] 王红娟, 毛迎新, 黄丹娟, 等. 巴东茶园土壤肥力及茶树营养状况分析[J]. 湖北农业科学, 2018, 57(15): 46-48.
Wang H J, Mao Y X, Huang D J, et al.Analysis of soil fertility and tea tree nutrition in Badong Distriction[J]. Hubei Agricultural Sciences, 2018, 57(15): 46-48.
[4] Jiang Y Y, Yang X D, Ni K, et al.Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation[J]. Journal of Environmental Management, 2023, 342: 118207. doi: 10.1016/j.jenvman.2023.118207.
[5] Chen Y X, Fu W J, Xiao H, et al.A review on rhizosphere microbiota of tea plant (Camellia sinensis L): recent insights and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2023, 71(49): 19165-19188.
[6] Zhang X C, Wang N N, Hou M M, et al.Contribution of K solubilising bacteria (Burkholderia sp.) promotes tea plant growth (Camellia sinesis) and leaf polyphenols content by improving soil available K level[J]. Functional Plant Biology, 2022, 49(3): 283-294.
[7] 韩晓阳, 李智, 张丽霞, 等. 茶园土壤高活性固氮菌的筛选鉴定及接种效果初步研究[J]. 茶叶科学, 2014, 34(5): 497-505.
Han X Y, Li Z, Zhang L X, et al.Screening, identification and inoculation effect of azotobacter from the soils of tea garden[J]. Journal of Tea Science, 2014, 34(5): 497-505.
[8] 黄小琴, 杨潇湘, 张蕾, 等. 解淀粉芽孢杆菌Bam22促进茶树抽芽及蚧壳虫防治效果[J]. 四川农业科技, 2021(11): 56-57, 62.
Huang X Q, Yang X X, Zhang L, et al.Bacillus amyloliquefaciens Bam22 promotes tea tree sprouting and scale insect control effect[J]. Sichuan Agricultural Science and Technology, 2021(11): 56-57, 62.
[9] 张淑卿, 郭金梅, 李剑峰, 等. 解磷菌与解磷固氮双效菌对贵州富硒土及茶苗硒锌含量的影响[J]. 茶叶科学, 2024, 44(3): 431-442.
Zhang S Q, Guo J M, Li J F, et al.Effects of phosphate solubilizing bacteria and phosphate solubilizing and nitrogen-fixing bacteria on selenium and zinc contents in selenium-rich soil and Camellia sinensis seedlings in Guizhou[J]. Journal of Tea Science, 2024, 44(3): 431-442.
[10] 周晓倩, 冯薇, 贺斌, 等. 毛乌素沙地土壤解磷菌的分离筛选及其解磷机制[J]. 农业工程学报, 2024, 40(11): 109-118.
Zhou X Q, Feng W, He B, et al.Isolation and screening of soil phosphate-solubilizing bacteria and their phosphate solubilization mechanisms in the Mu Us Desert[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(11): 109-118.
[11] 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285.
Xu H Y, Lü J, Yu C.Growth promoting of Pinus massoniana seedlings regulated by rhizosphere phosphate-solubilizing Paraburkholderia spp.[J]. Biotechnology Bulletin, 2023, 39(6): 274-285.
[12] 李翯, 王鹏宇, 陈子轩, 等. 黏质沙雷氏菌H04的有机磷降解活性及促生能力[J]. 江苏农业科学, 2023, 51(6): 194-199.
Li H, Wang P Y, Chen Z X, et al.Organic phosphorus degradation activity and growth-promoting ability of Serratia marcescens H04[J]. Jiangsu Agricultural Sciences, 2023, 51(6): 194-199.
[13] 杨艳华, 李俊州, 臧睿, 等. 茶树根际土壤解磷细菌的筛选及解磷活性分析[J]. 河南农业科学, 2014, 43(9): 60-65.
Yang Y H, Li J Z, Zang R, et al.Screening and analysis of phosphate-solubilizing activity of phosphate-solubilizing bacteria from rhizosphere soil of tea plant[J]. Journal of Henan Agricultural Sciences, 2014, 43(9): 60-65.
[14] Thakur R, Dhar H, Swarnkar M K, et al.Understanding the molecular mechanism of PGPR strain Priestia megaterium from tea rhizosphere for stress alleviation and crop growth enhancement[J]. Plant Stress, 2024, 12: 100494. doi: 10.1016/j.stress.2024.100494.
[15] Zhang H, Han L Z, Jiang B, et al.Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting[J]. World Journal of Microbiology & Biotechnology, 2021, 37(7): 109. doi: 10.1007/s11274-021-03078-3.
[16] Panda P, Ray P, Mahato B, et al.Performance of phosphate solubilizing bacteria in tea (Camellia sinensis L.) rhizosphere[J]. National Academy Science Letters-India, 2021, 44(6): 561-564.
[17] 张艳梅, 郑梦杰, 杨士杰, 等. 山核桃根际解磷及水解复杂有机物细菌的分离[J]. 微生物学报, 2024, 64(10): 3809-3824.
Zhang Y M, Zheng M J, Yang S J, et al.Isolation of bacteria activating phosphorus and hydrolyzing complex organic matter from the rhizosphere soil of Carya cathayensis Sarg.[J]. Acta Microbiologica Sinica, 2024, 64(10): 3809-3824.
[18] 王君, 范延辉, 尚帅, 等. 一株根际解磷菌的筛选鉴定及溶磷促生作用[J]. 中国土壤与肥料, 2022(6): 195-203.
Wang J, Fan Y H, Shang S, et al.Screening and identification of a rhizosphere phosphate-solubilizing bacteria and its role in promoting growth[J]. Soil and Fertilizer Sciences in China, 2022(6): 195-203.
[19] 李培根, 要雅倩, 宋吉祥, 等. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020, 36(9): 109-116.
Li P G, Yao Y Q, Song J X, et al.Isolation and Identification of IAA-producing bacillus sp on potato rhizosphere and its growth-promoting effect[J]. Biotechnology Bulletin, 2020, 36(9): 109-116.
[20] Liu W B, Cui S Y, Wu L T, et al.Effects of bio-organic fertilizer on soil fertility, yield, and quality of tea[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(4): 5109-5121.
[21] 高威, 左振宇, 李凌凌, 等. 一株高效解磷菌的筛选鉴定及溶磷性能[J]. 微生物学通报, 2022, 49(9): 3873-3889.
Gao W, Zuo Z Y, Li L L, et al.Isolation, identification, and characterization of a phosphate-solubilizing bacterial strain[J]. Microbiology China, 2022, 49(9): 3873-3889.
[22] 王星, 孟炯放, 马荣, 等. 一株水稻内生菌久留里副伯克霍尔德(Paraburkholderia kururiensis)的分离鉴定及促生功能的评价[J]. 中国土壤与肥料, 2022(4): 218-228.
Wang X, Meng J F, Ma R, et al.Isolation, identification and growth-promoting function evaluation of a rice endophytic bacterium Paraburkholderia kururiensis[J]. Soil and Fertilizer Sciences in China, 2022(4): 218-228.
[23] 罗义菊, 蓝增全, 陶燕蓝, 等. 古老茶园茶叶生化品质与土壤环境因子的综合评价[J]. 江苏农业科学, 2023, 51(17): 204-211.
Luo Y J, Lan Z Q, Tao Y L, et al.Comprehensive evaluation of tea biochemical quality and soil environmental factors in ancient tea gardens[J]. Jiangsu Agricultural Sciences, 2023, 51(17): 204-211.
[24] 王新叶, 张敏, 田小龙, 等. 糯高粱叶中IAA产生菌的分离筛选及其促植物生长作用[J]. 广西植物, 2024, 44(10): 1807-1816.
Wang X Y, Zhang M, Tian X L, et al.Isolation and screening of IAA-producing bacteria from glutinous sorghum leaves and its plant growth-promoting function[J]. Guihaia, 2024, 44(10): 1807-1816.
[25] Yan P, Shen C, Fan L C, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture, Ecosystems & Environment, 2018, 254: 20-25.
[26] 刘悦萱, 陈延玲, 张培强, 等. 茶园土壤酸化及其调控研究进展[J/OL]. 浙江农业学报, 2024: 1-10[2024-09-04]. http://kns.cnki.net/kcms/detail/33.1151.S.20240606.1554.002.html.
Liu Y X, Chen Y L, Zhang P Q, et al. Research progress on soil acidification and its regulation in tea plantations [J/OL]. Acta Agriculturae Zhejiangensis, 2024: 1-10[2024-09-04]. http://kns.cnki.net/kcms/detail/33.1151.S.20240606.1554.002.html.
[27] 李贵松, 吴林土, 徐火忠, 等. 不同微生物菌肥及用量对茶园土壤和茶叶品质的影响[J]. 浙江农业科学, 2024, 65(5): 1208-1214.
Li G S, Wu L T, Xu H Z, et al.Effects of different microbial fertilizer and its dosage on soil and tea quality in tea garden[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1208-1214.
[28] 张建霞. 解磷菌剂修复长柄扁桃种植基地土壤效应分析[D]. 西安: 西北大学, 2016.
Zhang J X.Analysis of effects on bioremediation of phosphobacteria Amygdalus planting base soil by phosphate-solubilizing bacteria [D]. Xi'an: Northwest University, 2016.
[29] 王泽煌, 王蒙, 蔡昆争, 等. 细菌对重金属吸附和解毒机制的研究进展[J]. 生物技术通报, 2016, 32(12): 13-18.
Wang Z H, Wang M, Cai K Z, et al.Research advances on biosorption and detoxification mechanisms of heavy metals by bacteria[J]. Biotechnology Bulletin, 2016, 32(12): 13-18.
[30] 贺字典, 高玉峰, 王燕, 等. 植物根际促生菌(PGPR)解磷菌的筛选及其对番茄促生作用的研究[J]. 西南农业学报, 2020, 33(12): 2891-2896.
He Z D, Gao Y F, Wang Y, et al.Study on phosphate-solubilizing strain selection of plant growth promoting rhizobacteria and its effect on tomato growth promotion[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(12): 2891-2896.
[31] Lin Z H, Qi Y P, Chen R B, et al.Effects of phosphorus supply on the quality of green tea[J]. Food Chemistry, 2012, 130(4): 908-914.
[32] 张观林, 张坤昌, 李永泉, 等. 营养液磷浓度对油茶小苗生长的影响[J]. 江苏农业科学, 2023, 51(21): 140-145.
Zhang G L, Zhang K C, Li Y Q, et al.Effects of phosphorus concentration in nutrient solution on the growth of Camellia oleifera seedlings[J]. Jiangsu Agricultural Sciences, 2023, 51(21): 140-145.
文章导航

/