欢迎访问《茶叶科学》,今天是
研究报告

‘槠叶齐’叶绿体与线粒体基因组密码子偏好性分析

  • 曾文娟 ,
  • 朱友鹏 ,
  • 陈嘉欣 ,
  • 李洪玉 ,
  • 王双辉 ,
  • 龚意辉 ,
  • 陈致印
展开
  • 1.湖南人文科技学院湖南省湘中特色农业资源开发利用与质量安全控制重点实验室,湖南 娄底 417000;
    2.湖南人文科技学院湖南省园艺生产与加工类创新创业教育中心,湖南 娄底 417000;
    3.湖南人文科技学院湖南省创新创业示范基地,湖南 娄底 417000;
    4.湖南人文科技学院农业与生物技术学院,湖南 娄底 417000;
    5.新化县桃花源农业开发有限公司,湖南 娄底 417000
曾文娟,女,本科在读,主要从事茶树遗传育种研究。

收稿日期: 2025-02-10

  修回日期: 2025-03-06

  网络出版日期: 2025-04-30

基金资助

湖南省自然科学基金(2023JJ50465)、湖南省科技创新计划项目(2024RC8289)、娄底市科技创新计划项目(2023RC3501)、国家级大学生创新训练项目(S202310553022)

Analysis of Codon Usage Bias in Chloroplast and Mitochondrial Genomes of Camellia sinensis cv.‘Zhuyeqi’

  • ZENG Wenjuan ,
  • ZHU Youpeng ,
  • CHEN Jiaxin ,
  • LI Hongyu ,
  • WANG Shuanghui ,
  • GONG Yihui ,
  • CHEN Zhiyin
Expand
  • 1. Key Laboratory of Characteristic Agricultural Resource Development and Quality Safety Control in Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
    2. Innovation and Entrepreneurship Education Center for Horticultural Production and Processing in Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
    3. Hunan University of Humanities, Science and Technology, Hunan Provincial Innovation and Entrepreneurship Demonstration Base, Loudi 417000, China;
    4. College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
    5. Xinhua County Taohuayuan Agricultural Development Co., Ltd., Loudi 417000, China

Received date: 2025-02-10

  Revised date: 2025-03-06

  Online published: 2025-04-30

摘要

密码子使用偏好性作为基因表达调控与分子进化的重要驱动力,在植物细胞器基因组研究中具有特殊意义。‘槠叶齐’(Camellia sinensis cv.‘Zhuyeqi’)作为中国重要的茶树品种,其细胞器基因组密码子使用模式尚未见系统报道。本研究对‘槠叶齐’52个叶绿体编码基因和29个线粒体编码基因开展系统生物学分析。结果表明:(1)‘槠叶齐’叶绿体基因组(ENC=44.64±3.25)和线粒体基因组(ENC=51.98±3.47)均呈现弱密码子偏好性,其中叶绿体偏好性主要受自然选择驱动(GC3s与ENC相关性R2=0.482),而线粒体受自然选择与突变压力共同作用(R2=0.312);(2)相对同义密码子使用度(RSCU)分析揭示两个细胞器基因组均显著偏好以A/U结尾的同义密码子,其中叶绿体基因组高表达基因(rpoC2psbA等)呈现更强的密码子偏好;(3)通过多参数筛选获得20个叶绿体最优密码子(GCA、GCU等)和23个线粒体最优密码子(GCC、AGG等)。本研究阐明了‘槠叶齐’细胞器基因组密码子使用特征及其进化驱动力,为茶树分子育种体系优化和外源基因高效表达提供了重要理论依据。

本文引用格式

曾文娟 , 朱友鹏 , 陈嘉欣 , 李洪玉 , 王双辉 , 龚意辉 , 陈致印 . ‘槠叶齐’叶绿体与线粒体基因组密码子偏好性分析[J]. 茶叶科学, 2025 , 45(2) : 201 -218 . DOI: 10.13305/j.cnki.jts.2025.02.008

Abstract

Codon usage bias serves as an important driving force for gene expression regulation and molecular evolution, and is of particular importance in the study of plant organellar genomes. Camellia sinensis cv. ‘Zhuyeqi’, an important tea cultivar in China, has not yet received a systematic report on the codon usage patterns of its organellar genomes. This study was systematic bioinformatic analysis of the 52 chloroplast-encoded genes and 29 mitochondrial-encoded genes of ‘Zhuyeqi’. The results reveal that: (1) both the chloroplast genome (ENC=44.64±3.25) and the mitochondrial genome (ENC=51.98±3.47) exhibit weak codon usage bias, with the chloroplast bias primarily driven by natural selection (GC3s and ENC correlation R2=0.482). While the mitochondrial bias is jointly influenced by natural selection and mutational pressure (R2=0.312). (2) Relative synonymous codon usage (RSCU) analysis demonstrates that both organellar genomes significantly prefer synonymous codons ending in A/U, and the highly expressed chloroplast genes (rpoC2, psbA) exhibit stronger codon preferences. (3) a multi-parameter screening approach identified 20 optimal chloroplast codons (GCA, GCU) and 23 optimal mitochondrial codons (GCC, AGG). This study provided elucidation of the codon usage characteristics and evolutionary driving forces in the organellar genomes of Camellia sinensis cv. ‘Zhuyeqi’, offering crucial theoretical guidance for the optimization of the tea molecular breeding system and the efficient expression of exogenous genes.

参考文献

[1] Lian C L, Yang H, Lan J X, et al.Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens[J]. PLoS ONE, 2022, 17(4): e0266546. doi: 10.1371/journal.pone.0266546.
[2] Parvathy S T, Udayasuriyan V, Bhadana V.Codon usage bias[J]. Molecular Biology Reports, 2021, 49(1): 539-565.
[3] Xu C, Cai X N, Chen Q Z, et al.Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium gower ramsey[J]. Evolutionary Bioinformatics, 2011, 7: 271-278.
[4] Kalkus A, Barrett J, Ashok T, et al.Evidence from simulation studies for selective constraints on the codon usage of the angiosperm psbA gene[J]. PLOS Computational Biology, 2021, 17(10): e1009535. doi: 10.1371/journal.pcbi.1009535.
[5] Wang Z J, Cai Q W, Wang Y, et al.Comparative analysis of codon bias in the chloroplast genomes of theaceae species[J]. Frontiers in Genetics, 2022, 13: 824610. doi: 10.3389/fgene.2022.824610.
[6] Liu L K, Du J X, Liu Z H, et al.Comparative and phylogenetic analyses of nine complete chloroplast genomes of Orchidaceae[J]. Scientific Reports, 2023, 13(1): 21403. doi: 10.1038/s41598-023-48043-2.
[7] Bi D, Han S Y, Zhou J, et al.Codon usage analyses reveal the evolutionary patterns among plastid genes of saxifragales at a larger-sampling scale[J]. Genes, 2023, 14(3): 694. doi: 10.3390/genes14030694.
[8] 金刚, 王丽萍, 龙凌云, 等. 普通野生稻线粒体蛋白质编码基因密码子使用偏好性的分析[J]. 植物科学学报, 2019, 37(2): 188-197.
Jin G, Wang L P, Long L Y, et al.Analysis of codon usage bias in the mitochondrial protein-coding genes of Oryza rufipogon[J]. Plant Science Journal, 2019, 37(2): 188-197.
[9] Yang J B, Yang S X, Li H T, et al.Comparative chloroplast genomes of Camellia species[J]. PLoS ONE, 2013, 8(8): e73053. doi: 10.1371/journal.pone.0073053.
[10] Wang J, Kan S L, Liao X Z, et al.Plant organellar genomes: much done, much more to do[J]. Trends in Plant Science, 2024, 29(7): 754-769.
[11] Lasky J R, Des Marais D L, Lowry D B, et al. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana[J]. Molecular Biology and Evolution, 2014, 31(9): 2283-2296.
[12] 徐荣, 宋文政, 乔振升, 等. 富民枳叶绿体基因组密码子偏好性分析[J]. 中草药, 2024, 55(20): 7093-7011.
Xu R, Song W Z, Qiao Z S, et al.Codon preference analysis of chloroplasts genome in medicinal plants of Poncirus polyandra[J]. Chinese Traditional and Herbal Drugs, 2024, 55(20): 7093-7111.
[13] 董兴春. 异源多倍化核质互作的线粒体、叶绿体基因变异的初探[D]. 成都: 四川农业大学, 2015.
Dong X C.Preliminary study on mitochondria and chloroplast genes variation result in cytonuclear interaction of allopolyploidy[D]. Chengdu: Sichuan Agricultural University, 2015.
[14] 侯炳豪. 基于全基因组重测序和转录组分析的铁观音遗传变异研究[D]. 福州: 福建农林大学, 2023.
Hou B H.Genetic variation study of Tieguanyin based on whole genome resequencing and transcriptome analysis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023.
[15] 尹明华, 张嘉欣, 乐芸, 等. 茶树大面白叶绿体基因组特征、密码子偏好性及其系统发育分析[J]. 茶叶科学, 2024, 44(3): 411-430.
Yin M H, Zhang J X, Le Y, et al.Genomic characteristics, codon preference, and phylogenetic analysis of chloroplasts of Camellia sinensis cv. ‘Damianbai’[J]. Journal of Tea Science, 2024, 44(3): 411-430.
[16] 刘振, 赵洋, 杨培迪, 等. 三倍体茶树‘西莲1号’叶绿体基因组特征及系统发育分析[J]. 茶叶通讯, 2023, 50(2): 166-175.
Liu Z, Zhao Y, Yang P D, et al.Characterization and phylogenetic analysis of the complete chloroplast genome of triploid tea plant Xilian 1[J]. Journal of Tea Communication, 2023, 50(2): 166-175.
[17] Xu W J, Xing T, Zhao M M, et al.Synonymous codon usage bias in plant mitochondrial genes is associated with intron number and mirrors species evolution[J]. PLoS ONE, 2015, 10(6): e0131508. doi: 10.1371/journal.pone.0131508.
[18] 张文娟. 基于密码子水平的生物信息学分析及进化研究[D]. 上海: 复旦大学, 2006.
Zhang W J.Codon-level bioinformatics analysis and evolutionary study[D]. Shanghai: Fudan University, 2006.
[19] Zhang F, Li W, Gao C W, et al.Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var. assamica[J]. Scientific Data, 2019, 6(1): 209-219. doi: 10.1038/s41597-019-0201-8.
[20] Yu X Q, Drew B T, Yang J B, et al.Comparative chloroplast genomes of eleven Schima (Theaceae) species: insights into DNA barcoding and phylogeny[J]. PLoS ONE, 2017, 12(6): e0178026. doi: 10.1371/journal.pone.0178026.
[21] Song B N, Liu C K, Zhao A Q, et al.Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses[J]. BMC Plant Biology, 2024, 24(1): 70. doi: 10.1186/s12870-024-04750-0.
[22] Zhang T W, Fang Y J, Wang X M, et al.The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes[J]. PLoS ONE, 2012, 7(1): e30531. doi: 10.1371/journal.pone.0030531.
[23] 周艳, 李婧, 文香英. 贵州特有植物平坝槭叶绿体基因组特征分析[J]. 种子, 2024, 43(1): 1-7.
Zhou Y, Li J, Wen X Y.Analysis on chloroplast genome characteristics of the unique guizhou species Acer shihweii[J]. Seed, 2024, 43(9): 1-7.
[24] Shen L W, Chen S Q, Liang M, et al.Comparative analysis of codon usage bias in chloroplast genomes of ten medicinal species of Rutaceae[J]. BMC Plant Biology, 2024, 24(1): 424. doi: 10.1186/s12870-024-04999-5.
[25] 冯瑞云, 梅超, 王慧杰, 等. 籽粒苋叶绿体基因组密码子偏好性分析[J]. 中国草地学报, 2019, 41(4): 8-15.
Feng R Y, Mei C, Wang H J, et al.Analysis of codon usage in the chloroplast genome of grain amaranth (Amaranthus hypochondriacus L.)[J]. Chinese Journal of Grassland, 2019, 41(4): 8-15.
[26] 余志伟, 陈垣, 郭凤霞, 等. 菘蓝叶绿体基因组密码子使用偏好性分析[J]. 草地学报, 2024, 32(8): 2374-2385.
Yu Z W, Chen Y, Guo F X, et al.Codon usage bias analysis of the chloroplast genome of Isatis indigotica[J]. Acta Agrestia Sinica, 2024, 32(8): 2374-2385.
[27] 王杰敏, 马东来, 韩晓伟, 等. 24份忍冬属材料叶绿体基因组密码子使用偏好性分析[J]. 植物资源与环境学报, 2023, 32(3): 12-23.
Wang J M, Ma D L, Han X W, et al.Analysis on codon usage bias of chloroplast genomes of 24 Lonicera materials[J]. Journal of Plant Resources and Environment, 2023, 32(3): 12-23.
[28] 赵月梅, 杨贵清, 徐其碧, 等. 建始槭叶绿体基因组密码子使用偏性分析[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 792-800.
Zhao Y M, Yang G Q, Xu Q B, et al.Codon usage bias of chloroplast genome in Acer henryi[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 51(6): 792-800.
[29] 李俊霖, 郭淑红, 张强, 等. 蒙古黄芪叶绿体全基因组特征解析及亲缘性分析[J]. 中草药, 2024, 55(7): 2366-2375.
Li J L, Guo S H, Zhang Q, et al.Characteristics and phylogenetic analysis of Astragalus membranaceus var. mongholicus chloroplast whole genome[J]. Chinese Traditional and Herbal Drugs, 2024, 55(7): 2366-2375.
[30] 辛雅萱, 黎若竹, 李鑫, 等. 杧果叶绿体基因组密码子使用偏好性分析[J]. 中南林业科技大学学报, 2021, 41(9): 148-156, 165.
Xin Y X, Li R Z, Li X, et al.Analysis on codon usage bias of chloroplast genome in Mangifera indica[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 148-156, 165.
[31] 张冬冬, 韩宏伟, 余镇藩, 等. 12种蔷薇科植物叶绿体基因组密码子偏好性分析[J]. 中国农业科技导报, 2023, 25(8): 65-75.
Zhang D D, Han H W, Yu Z F, et al.Codon preference analysis of chloroplast genome in 12 Rosaceae plants[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 65-75.
[32] 王霖娇, 田静, 盛茂银. 10种淫羊藿属植物核型分析及其分类学的意义[J]. 四川农业大学学报, 2017, 35(3): 389-396.
Wang L J, Tian J, Sheng M Y.Karyotype analysis of ten Epimedium species and its taxonomic implications[J]. Journal of Sichuan Agricultural University, 2017, 35(3): 389-396.
[33] 唐向民, 杨守臻, 陈怀珠, 等. 栽培大豆和野生大豆线粒体基因组密码子使用偏性的比较分析[J]. 广西植物, 2020, 40(7): 926-934.
Tang X M, Yang S Z, Chen H Z, et al.Comparative analysis on codon usage bias in mitogenome of two species in genus Glycine[J]. Guihaia, 2020, 40(7): 926-934.
[34] 江淑珍, 连辉, 熊远芳, 等. 米槠叶绿体基因组密码子偏好性分析[J]. 分子植物育种, 2024, 22(16): 5307-5316.
Jiang S Z, Lian H, Xiong Y F, et al.Analysis of codon bias in chloroplast genome of Castanopsis carlesii[J]. Molecular Plant Breeding, 2024, 22(16): 5307-5316.
[35] Wang Y Z, Jiang D C, Guo K, et al.Comparative analysis of codon usage patterns in chloroplast genomes of ten Epimedium species[J]. BMC Genomic Data, 2023, 24(1): 3. doi: 10.1186/s12863-023-01104-x.
[36] Wang Z K, Liu Y, Zheng H Y, et al.Comparative analysis of codon usage patterns in nuclear and chloroplast genome of Dalbergia (Fabaceae)[J]. Genes, 2023, 14(5): 1110. doi: 10.3390/genes14051110.
[37] Xiao M K, Hu X, Li Y Q, et al.Comparative analysis of codon usage patterns in the chloroplast genomes of nine forage legumes[J]. Physiology and Molecular Biology of Plants, 2024, 30(2): 153-166.
[38] 王淘, 陈烨, 李竹, 等. 枳叶绿体基因组密码子偏好性分析[J]. 基因组学与应用生物学, 2023, 42(10): 1050-1057.
Wang T, Chen Y, Li Z, et al.Analysis of codon usage bias in the chloroplast genome of Citrus trifoliata[J]. Genomics and Applied Biology, 2023, 42(10): 1050-1057.
[39] 李江飞, 李亚麒, 唐军荣, 等. 高山松叶绿体基因组密码子偏好性模式[J]. 生物学杂志, 2023, 40(1): 52-60.
Li J F, Li Y Q, Tang J R, et al.Comparison of codon preference patterns in the chloroplast genome of Pinus densata[J]. Journal of Biology, 2023, 40(1): 52-60.
[40] Wang Y H, Wei Q Y, Xue T Y, et al.Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing[J]. BMC Genomics, 2024, 25(1): 561. doi: 10.1186/s12864-024-10455-3.
[41] 杨国锋, 苏昆龙, 赵怡然, 等. 蒺藜苜蓿叶绿体密码子偏好性分析[J]. 草业学报, 2015, 24(12): 171-179.
Yang G F, Su K L, Zhao Y R, et al.Analysis of codon usage in the chloroplast genome of Medicago truncatula[J]. Acta Prataculturae Sinica, 2015, 24(12): 171-179.
[42] 吴学俊, 梁湘兰, 易子群, 等. 湖北山楂叶绿体基因组密码子偏好性分析[J]. 分子植物育种, 2023, 21(8): 2508-2516.
Wu X J, Liang X L, Yi Z Q, et al.Analysis of codon bias in the chloroplast genome of Crataegus hupehensis Sarg (Rosaceae)[J]. Molecular Plant Breeding, 2023, 21(8): 2508-2516.
[43] 段祥光, 于涛, 曹萌, 等. 樟叶槭叶绿体基因组序列密码子偏性分析[J]. 西北林学院学报, 2023, 38(1): 102-107.
Duan X G, Yu T, Cao M, et al.Codon usage bias of Acer cinnamomifolium chloroplast genome[J]. Journal of Northwest Forestry University, 2023, 38(1): 102-107.
[44] 丁锐, 胡兵, 宗小雁, 等. 杓兰叶绿体基因组密码子偏好性分析[J]. 林业科学研究, 2021, 34(5): 177-185.
Ding R, Hu B, Zong X Y, et al.Analysis of codon usage in the chloroplast genome of Cypripedium calceolus[J]. Forest Research, 2021, 34(5): 177-185.
[45] 钟才荣, 何斯敏, 方赞山, 等. 使君子科3种红树植物叶绿体基因组密码子使用偏好性分析[J]. 植物资源与环境学报, 2024, 33(2): 1-12.
Zhong C R, He S M, Fang Z S, et al.Analysis on codon usage bias of chloroplast genomes of three species of mangroves in Combretaceae[J]. Journal of Plant Resources and Environment, 2024, 33(2): 1-12.
[46] 原晓龙, 刘音, 康洪梅, 等. 蒜头果叶绿体基因组密码子偏好性分析[J]. 西南林业大学学报, 2021, 41(3): 15-22.
Yuan X L, Liu Y, Kang H M, et al.Analysis of codon usage bias in chloroplast genome of Malania oleifera[J]. Journal of Southwest Forestry University, 2021, 41(3): 15-22.
[47] Suzuki H, Morton B R.Codon adaptation of plastid genes[J]. PLoS One, 2016, 11(5): e0154306. doi: 10.1371/journal.pone.0154306.
[48] Ye Y J, Liu J M, Zhou Y W, et al.Complete chloroplast genome sequences of four species in the caladium genus: comparative and phylogenetic analyses[J]. Genes, 2022, 13(12): 2180. doi: 10.3390/genes13122180.
[49] 尹明华, 余璐, 周佳慧, 等. 马家柚叶绿体基因组特征及其密码子偏好性分析[J]. 果树学报, 2024, 41(5): 824-846.
Yin M H, Yu L, Zhou J H, et al.Analysis of the chloroplast genome sequence characteristies and its code usage bias of Citrus maxima (L.) Osbeck ‘Majiayou’[J]. Journal of Fruit Science, 2024, 41(5): 824-846.
[50] 洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103.
Hong S R, Zhang M T, Xu Z L, et al.Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’[J]. Journal of Zhejiang A & F University, 2024, 41(1): 92-103.
[51] 李亚麒, 黄家雄, 娄予强, 等. 小粒咖啡铁皮卡叶绿体基因组密码子偏好性分析[J]. 西北林学院学报, 2023, 38(2): 92-99.
Li Y Q, Huang J X, Lou Y Q, et al.Codon usage bias of the chloroplast genome in Coffea arabica ‘Typica’[J]. Journal of Northwest Forestry University, 2023, 38(2): 92-99.
[52] 朱梦飞, 胡迎峰, 师雪芹. 濒危植物新绒苔叶绿体基因组特征及系统发育位置分析[J]. 浙江农林大学学报, 2025, 42(1): 55-63.
Zhu M F, Hu Y F, Shi X Q.Characterization and phylogenetic location analysis of chloroplast of the endangered plant Neotrichocolea bissetii[J]. Journal of Zhejiang A & F University, 2025, 42(1): 55-63.
[53] Wu L W, Fan P H, Zhou J G, et al.Gene losses and homology of the chloroplast genomes of Taxillus and Phacellaria species[J]. Genes, 2023, 14(4): 943. doi: 10.3390/genes14040943.
[54] 郭松, 梁湘兰, 黄青青, 等. 紫九牛叶绿体基因组密码子偏好性分析[J]. 广西植物, 2022, 42(8): 1426-1432.
Guo S, Liang X L, Huang Q Q, et al.Codon usage bias in the chloroplast genome of Ventilago leiocarpa[J]. Guihaia, 2022, 42(8): 1426-1432.
[55] Yang Y, Wang X L, Shi Z J.Comparative study on codon usage patterns across chloroplast genomes of eighteen Taraxacum species[J]. Horticulturae, 2024, 10(5): 492. doi: 10.3390/horticulturae10050492.
[56] 夏晞, 彭劲谕, 王大玮, 等. 3种榕属叶绿体基因组密码子偏好性分析[J]. 西北林学院学报, 2022, 37(5): 88-94.
Xia X, Peng J Y, Wang D W, et al.Codon usage bias in chloroplast genomes of three Ficus species[J]. Journal of Northwest Forestry University, 2022, 37(5): 88-94.
[57] 蔡德育, 郭晓农, 朱月滢, 等. 罗布麻AvFLS密码子偏好性与进化[J]. 应用与环境生物学报, 2022, 28(2): 423-431.
Cai D Y, Guo X N, Zhu Y Y, et al.Codon bias and evolutionary analysis of AvFLS in Apocynum venetum L.[J]. Chinese Journal of Applied & Environmental Biology, 2022, 28(2): 423-431.
[58] Wang X S, Wang Y Q, Li S H, et al.Analysis of codon usage bias in the Platycarya chloroplast genome[J]. Tree Genetics and Molecular Breeding, 2021, 11(1): 1-11.
[59] Monpara J K, Chudasama K S, Thakei V S.Analysis for molecular distinction in the chloroplast DNA sequences of Gymnospora montana (Celastraceae) and Belanites aegyptiaca (Balanitaceae) from semi-arid area[J]. International Journal of Bio-inspired Computation, 2023, 2(1): 82-99.
[60] Talat F, Udikeri S S.Synonymous codon usage bias factors affecting chloroplast genome of grape wine vitis vinifera[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(11): 1971-1977.
[61] 邓永彪, 张进, 蓝伦礼, 等. 珍稀濒危植物越南小花金花茶的叶绿体基因组特征分析[J]. 广西植物, 2024, 44(1): 30-42.
Deng Y B, Zhang J, Lan L L, et al.Analysis of chloroplast genome features of endangered and rare plant Camellia minima[J]. Guihaia, 2024, 44(1): 30-42.
[62] 李琳, 徐明志, 刘燕蓉, 等. 苜蓿基因组密码子偏好性分析[J]. 草地学报, 2024, 32(9): 2695-2706.
Li L, Xu M Z, Liu Y R, et al.Codon bias analysis of Medicago genome[J]. Acta Agrestia Sinica, 2024, 32(9): 2695-2706.
文章导航

/