欢迎访问《茶叶科学》,今天是
研究报告

森林转化为茶园及其管理对土壤碳、氮库的影响和调控机制初探

  • 黄福印 ,
  • 张少博 ,
  • 胡强 ,
  • 罗莹 ,
  • 董雅洁 ,
  • 张洁 ,
  • 李鑫 ,
  • 付建玉 ,
  • 王华森 ,
  • 颜鹏
展开
  • 1.浙江农林大学园艺科学学院,浙江 杭州 311300;
    2.中国农业科学院茶叶研究所,浙江 杭州 310008;
    3.浙江农林大学数学与计算机学院,浙江 杭州 311300;
    4.普洱学院,云南 普洱 665000
黄福印,男,硕士研究生,主要从事茶园土壤固碳方面的研究。

收稿日期: 2025-01-15

  修回日期: 2025-03-10

  网络出版日期: 2025-04-30

基金资助

浙江省重点研发计划(2022C02046)、浙江省三农九方科技合作项目(2024SNJF031)、中央级公益性科研院所基本科研业务费专项(CAAS-ZDRW202417)

The Impacts and Regulatory Mechanisms of Forest Conversion to Tea Plantations and Their Management on Soil Carbon and Nitrogen Pools

  • HUANG Fuyin ,
  • ZHANG Shaobo ,
  • HU Qiang ,
  • LUO Ying ,
  • DONG Yajie ,
  • ZHANG Jie ,
  • LI Xin ,
  • FU Jianyu ,
  • WANG Huasen ,
  • YAN Peng
Expand
  • 1. College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China;
    4. Pu'er University, Pu'er 665000, China

Received date: 2025-01-15

  Revised date: 2025-03-10

  Online published: 2025-04-30

摘要

为明确森林转化为茶园及其茶园管理对茶园土壤剖面的碳(C)、氮(N)组分的影响,并从土壤真菌微生物群落结构方面探索其调控机制,以森林土壤以及低、中、高3个不同施肥水平的茶园土壤为研究对象,分别采集0~10、10~20、20~40 cm和40~60 cm土层土壤,测定土壤碳、氮组分和其他养分含量以及真菌群落结构与组成。结果表明,与森林土壤相比,茶园管理显著提高0~10 cm土层土壤有机碳和总氮含量。高投入水平下茶园土壤全碳、总氮分别达到46.57 g·kg-1和5.13 g·kg-1,与低投入水平茶园相比,分别提高68.12%和88.60%。土地利用变化和茶园不同施肥水平则会显著改变真菌群落结构和组成,改变主要受到有效钾、有效磷、总氮等的调控。同时,随着土层深度加深,真菌丰富度不断下降。进一步分析发现,座囊菌纲(Dothideomycetes)和深黄伞形霉纲(Umbelopsidomycetes)与碳、氮组分呈显著正相关,被孢霉菌纲(Mortierellomycetes)、双担子菌纲(Geminibasidiomycetes)和毛霉菌亚门未定纲(Mucoromycotina_cls_Incertae_sedis)与土壤碳、氮组分呈显著负相关,这些种群相对丰度的变化对茶园土壤的碳、氮循环可能具有较强影响。因此,森林转化为茶园以及茶园不同施肥管理通过影响土壤真菌群落结构和优势种群丰度,从而影响土壤碳、氮积累。

本文引用格式

黄福印 , 张少博 , 胡强 , 罗莹 , 董雅洁 , 张洁 , 李鑫 , 付建玉 , 王华森 , 颜鹏 . 森林转化为茶园及其管理对土壤碳、氮库的影响和调控机制初探[J]. 茶叶科学, 2025 , 45(2) : 234 -252 . DOI: 10.13305/j.cnki.jts.2025.02.004

Abstract

This study investigated how the conversion of forests to tea plantations and associated management practices affect the dynamics of carbon (C) and nitrogen (N) fractions across soil profiles in tea agroecosystems, with a focus on fungal community-mediated regulatory mechanisms. We compared forest soils with tea plantation soils under low-, medium-, and high-intensity fertilization regimes. Soil cores were systematically collected from four depth intervals (0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm) to analyze vertical stratification of C/N fractions, nutrient stoichiometry, and fungal community composition. The results reveal that tea plantations management significantly enhanced soil organic carbon and total nitrogen contents in the 0-10 cm soil layer compared to forest soil. Under high-input conditions, total carbon and nitrogen reached 46.57 g·kg-1 and 5.13 g·kg-1, respectively, increasing by 68.12% and 88.60% compared to low-input tea plantations. Land-use conversion and fertilization intensity gradients in tea plantations significantly modified fungal community structure and composition, with these changes being mainly driven by soil nutrient availability, including available phosphorus (AP), available potassium (AK), and total nitrogen (TN). In addition, fungal richness demonstrates a progressive decline across soil depth gradients (0-60 cm). Further analyses reveals that Dothideomycetes and Umbelopsidiomycetes exhibited significant positive correlations with soil C and N fractions, whereas Mortierellomycetes, Geminibasidiomycetes and Mucoromycotina_cls_Incertae_sedis showed pronounced negative correlations. Variations in the relative abundance of these taxa may strongly influence carbon and nitrogen cycling in tea plantation soils. Therefore, the conversion of forests to tea plantations and different fertilization management practices regulate soil carbon and nitrogen accumulation by influencing the structure of soil fungal communities and the abundance of dominant taxa.

参考文献

[1] Zellweger F, De Frenne P, Lenoir J, et al.Forest microclimate dynamics drive plant responses to warming[J]. Science, 2020, 368: 772-775.
[2] 张亦凡, 王海燕, 高子滢, 等. 华南地区森林土壤有机碳和全氮密度及储量估算[J]. 中国土壤与肥料, 2024(12): 17-26.
Zhang Y F, Wang H Y, Gao Z Y, et al.Estimation of organic carbon and total nitrogen density and storage in forest soils in southern China[J]. Soil and Fertilizer Sciences in China, 2024(12): 17-26.
[3] Wei X R, Shao M G, Gale W, et al.Global pattern of soil carbon losses due to the conversion of forests to agricultural land[J]. Scientific Reports, 2014, 4: 4062. doi: 10.1038/srep04062.
[4] Wan P, Zhao X, Ou Z, et al.Forest management practices change topsoil carbon pools and their stability[J]. Science of the Total Environment, 2023, 902: 166093. doi: 10.1016/j.scitotenv.2023.166093.
[5] Huang X Z, Ibrahim M M, Luo Y, et al. Land use change alters soil organic carbon: constrained global patterns and predictors[J]. Earth's Future, 2024, 12(5): e2023EF004254. doi: 10.1029/2023EF004254.
[6] Mgelwa A S, Ngaba M J Y, Hu B, et al. Meta-analysis of 21st century studies shows that deforestation induces profound changes in soil characteristics, particularly soil organic carbon accumulation[J]. Forest Ecosystems, 2024: 100257. doi: 10.1016/j.fecs.2024.100257.
[7] 中国茶叶流通协会. 2023中国茶叶行业发展报告[R]. 北京: 中国轻工业出版社, 2023.
China Tea Marketing Association. 2023 China tea industry development report[R]. Beijing: China Light Industry Press, 2023.
[8] 游巍斌, 李颖, 周艳, 等. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49.
You W B, Li Y, Zhou Y, et al.Edge effect of pinus massoniana forest converted into tea plantation on topsoil carbon content in Wuyishan national park[J]. Scientia Silvae Sinicae, 2023, 59(10): 41-49.
[9] Gui H, Fan L C, Wang D H, et al.Variations in soil nutrient dynamics and bacterial communities after the conversion of forests to long-term tea monoculture systems[J]. Frontiers in Microbiology, 2022, 13: 896530. doi: 10.3389/fmicb.2022.896530.
[10] 林诚, 陈子聪, 吴一群, 等. 林地转变为茶园的土壤pH及养分变化特征[J]. 茶叶科学, 2020, 40(2): 186-193.
Lin C, Chen Z C, Wu Y Q, et al.Acidification characteristics and nutrient contents in soils of tea garden and adjacent woodland in subtropical region[J]. Journal of Tea Science, 2020, 40(2): 186-193.
[11] Fuentes M, Govaerts B, De León F, et al.Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality[J]. European Journal of Agronomy, 2009, 30: 228-237.
[12] Ji L F, Wu Z D, You Z M, et al.Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: a 10-year field trial in a tea plantation[J]. Agriculture, Ecosystems and Environment, 2018, 268: 124-132.
[13] Yan P, Shen C, Fan L C, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture, Ecosystems and Environment, 2018, 254: 20-25.
[14] Dijkstra F A, Hobbie S E, Reich P B, et al.Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment[J]. Plant and Soil, 2005, 272: 41-52.
[15] Yan P, Shen C, Zou Z H, et al.Increased soil fertility in tea gardens leads to declines in fungal diversity and complexity in subsoils[J]. Agronomy, 2022, 12: 1751. doi: 10.3390/agronomy12081751.
[16] Zhang H, Ding W, Yu H, et al.Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment[J]. Biology and Fertility of Soils, 2015, 51, 137-150.
[17] Jing H, Li J, Yan B, et al.The effects of nitrogen addition on soil organic carbon decomposition and microbial C-degradation functional genes abundance in a Pinus tabulaeformis forest[J]. Forest Ecology and Management, 2021, 489: 119098. doi: 10.1016/j.foreco.2021.119098.
[18] Liu W X, Xu W H, Han Y, et al.Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe[J]. Biology and Fertility of Soils, 2007, 44: 259-268.
[19] Jian S Y, Li J W, Chen J, et al.Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32-43.
[20] Han X M, Hu C, Chen Y F, et al.Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment[J]. European Journal of Agronomy, 2020, 113: 125965. doi: 10.1016/j.eja.2019.125965.
[21] Du Y D, Cui B J, Zhang Q, et al.Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis[J]. Catena, 2020, 193: 104617. doi: 10.1016/j.catena.2020.104617.
[22] Li X, Qiao L, Huang Y P, et al.Manuring improves soil health by sustaining multifunction at relatively high levels in subtropical area[J]. Agriculture, Ecosystems and Environment, 2023, 353: 108539. doi: 10.1016/j.agee.2023.108539.
[23] 陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报, 2014, 34(21): 6137-6146.
Tao L, Chu G X, Liu T, et al.The effect of organic fertilizer replacing some chemical fertilizers on the yield, soil microbial quantity, and enzyme activity of long-term continuous cotton fields[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146.
[24] 李娟, 赵秉强, 李秀英, 等. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J]. 中国农业科学, 2008(1): 144-152.
Li J, Zhao B Q, Li X Y, et al.The effect of long-term application of organic-inorganic fertilizers on soil microbiological characteristics and soil fertility[J]. Scientia Agricultura Sinica, 2008(1): 144-152.
[25] Lin B J, Li R C, Liu K C, et al.Management-induced changes in soil organic carbon and related crop yield dynamics in China's cropland[J]. Global Change Biology, 2023, 29: 3575-3590.
[26] Xu H W, Qu Q, Li G W, et al.Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation[J]. Soil Biology and Biochemistry, 2022, 170: 108714. doi: 10.1016/j.soilbio.2022.108714.
[27] Mueller R C, Rodrigues J L, Nüsslein K, et al.Land use change in the Amazon rain forest favours generalist fungi[J]. Functional Ecology, 2016, 30: 1845-1853.
[28] Waymouth V, Miller R E, Kasel S, et al.Riparian fungal communities respond to land-use mediated changes in soil properties and vegetation structure[J]. Plant and Soil, 2022, 475: 491-513.
[29] Wang F, Chen Y Z, Yu X M, et al.Response of the soil fungal community and its function during the conversion of forestland to tea plantations: a case study in Southeast China[J]. Forests, 2023, 14: 209. doi: 10.3390/f14020209.
[30] Zhou J, Jiang X, Zhou B K, et al.Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biology and Biochemistry, 2016, 95: 135-143.
[31] Meng J, Li W J, Qiu Y B, et al.Responses of soil microbial communities to manure and biochar in wheat cultivation of a rice-wheat rotation agroecosystem in East China[J]. Pedosphere, 2023, 33: 893-904.
[32] Liu X J, Hannula S E, Li X, et al.Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings[J]. Soil Biology and Biochemistry, 2021, 160: 108343. doi: 10.1016/j.soilbio.2021.108343.
[33] Vance E D, Brookes P C, Jenkinson D S.An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19: 703-707.
[34] García-Alegría A M, Anduro-Corona I, Pérez-Martínez C J, et al. Quantification of DNA through the NanoDrop spectrophotometer: methodological validation using standard reference material and Sprague Dawley rat and human DNA[J]. International Journal of Analytical Chemistry, 2020, 2020(1): 8896738. doi: 10.1155/2020/8896738.eCollection 2020.
[35] Ma B, Wang Y, Ye S, et al.Earth microbial co-occurrence network reveals interconnection pattern across microbiomes[J]. Microbiome, 2020, 8: 1-12.
[36] 罗晓虹, 王子芳, 陆畅, 等. 土地利用方式对土壤团聚体稳定性和有机碳含量的影响[J]. 环境科学, 2019, 40(8): 3816-3824.
Luo X H, Wang Z F, Lu C, et al.The impact of land use on soil aggregate stability and organic carbon content[J]. Environmental Science, 2019, 40(8): 3816-3824.
[37] Juang K W, Chen C P.Changes in soil organic carbon and nitrogen stocks in organic farming practice and abandoned tea plantation[J]. Botanical Studies, 2023: 64, 28. doi: 10.1186/s40529-023-00401-z
[38] Wu Z, Zhang F T, Ding W, et al.Native forests transformed into cash crops reduced soil multi-functionality by modifying the microbial community composition and keystone species’ abundance in the Jianghuai Hilly Region[J]. Environmental Science and Pollution Research, 2023, 30: 113747-113757.
[39] Wiesmeier M, Urbanski L, Hobley E, et al.Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162.
[40] Li S, Li H, Yang C, et al.Rates of soil acidification in tea plantations and possible causes[J]. Agriculture, Ecosystems & Environment, 2016, 233: 60-66.
[41] Hu X J, Liu J J, Liang A Z, et al.Soil metagenomics reveals reduced tillage improves soil functional profiles of carbon, nitrogen, and phosphorus cycling in bulk and rhizosphere soils[J]. Agriculture, Ecosystems & Environment, 2025, 379: 109371. doi: 10.1016/j.agee.2024.109371.
[42] Dutta D, Singh V K, Upadhyay P K, et al.Long-term impact of organic and inorganic fertilizers on soil organic carbon dynamics in a rice-wheat system[J]. Land Degradation and Development 2022, 33: 1862-1877.
[43] Li C Z, Aluko O O, Yuan G, et al.The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis[J]. Scientific Reports, 2022, 12(1): 16326. doi: 10.1038/s41598-022-18684-w.
[44] Li J N, Zhao J, Liao X H, et al.Pathways of soil organic carbon accumulation are related to microbial life history strategies in fertilized agroecosystems[J]. Science of the Total Environment, 2024, 927: 172191. doi: 10.1016/j.scitotenv.2024.172191.
[45] Zhang S B, Zhou J S, Chen J, et al.Changes in soil CO2 and N2O emissions in response to urea and biochar-based urea in a subtropical Moso bamboo forest[J]. Soil and Tillage Research, 2023, 228: 105625. doi: 10.1016/j.still.2022.105625.
[46] Craine J M, Morrow C, Fierer N.Microbial nitrogen limitation increases decomposition[J]. Ecology, 2007, 88: 2105-2113.
[47] Liu X J, Finley B K, Mau R L, et al.The soil priming effect: consistent across ecosystems, elusive mechanisms[J]. Soil Biology and Biochemistry, 2020, 140: 107617. doi: 10.1016/j.soilbio.2019.107617.
[48] Vasbieva M T.Effect of long-term application of organic and mineral fertilizers on the organic carbon content and nitrogen regime of soddy-podzolic soil[J]. Eurasian Journal of Soil Science, 2019, 52: 1422-1428.
[49] Li D D, Luo P Y, Han X R, et al.Influence of long-term fertilization on soil physicochemical properties in a brown soil[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108(4): 42027. doi: 10.1088/1755-1315/108/4/042027.
[50] Yang X D, Tang S, Ni K, et al.Long-term nitrogen addition increases denitrification potential and functional gene abundance and changes denitrifying communities in acidic tea plantation soil[J]. Environmental Research, 2023, 216: 114679. doi: 10.1016/j.envres.2022.114679.
[51] 乔春连, 布仁巴音. 合成氮肥对中国茶园土壤养分供应和活性氮流失的影响[J]. 土壤学报, 2018, 55(1): 174-181.
Qiao C L, Burenbayin. Effects of application of synthetic nitrogen fertilizers on soil nutrient supply and loss of reactive nitrogen in tea (Camellia sinensis L. Kuntze) gardens in China[J]. Acta Pedologica Sinica, 2018, 55(1): 174-181.
[52] 代依涵, 李渝, 刘彦伶, 等. 不同肥力茶园土壤碳氮养分对施氮量的响应[J]. 中国茶叶, 2022, 44(11): 24-31.
Dai Y H, Li Y, Liu Y L, et al.Responses of soil carbon and nitrogen characteristics to nitrogen application in tea gardens with different fertility[J]. China Tea, 2022, 44(11): 24-31.
[53] Tian S, Zhu B, Yin R, et al.Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology and Biochemistry, 2022, 165: 108533. doi: 10.1016/j.soilbio.2021.108533.
[54] Ma B L, Dwyer L M, Gregorich E G.Soil nitrogen amendment effects on seasonal nitrogen mineralization and nitrogen cycling in maize production[J]. Agronomy Journal, 1999, 91: 1003-1009.
[55] 蓝贤瑾, 刘益仁, 侯红乾, 等. 长期有机无机肥配施对红壤性水稻土微生物生物量和有机质结构的影响[J]. 农业资源与环境学报, 2021, 38(5): 810-819.
Lan X J, Liu Y R, Hou H Q, et al.The effect of long-term application of organic-inorganic fertilizers on microbial biomass and organic matter structure in red paddy soil[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 810-819.
[56] Ye J, Wang Y, Jia X, et al.Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality[J]. Frontiers in Plant Science, 2022, 13: 1055900. doi: 10.3389/fpls.2022.1055900.
[57] Ye J, Wang Y, Wang Y, et al.Improvement of soil acidification and ammonium nitrogen content in tea plantations by long-term use of organic fertilizer[J]. Plant Biology, 2023, 25: 994-1008.
[58] Gu S S, Hu Q L, Cheng Y Q, et al.Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils[J]. Soil and Tillage Research, 2019, 195: 104356. doi: 10.1016/j.still.2019.104356.
[59] Koga K, Suehiro Y, Matsuoka S T, et al.Evaluation of growth activity of microbes in tea field soil using microbial calorimetry[J]. Journal of Bioscience and Bioengineering, 2003, 95: 429-434.
[60] Liu E, Yan C G, Mei X R, et al.Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158: 173-180.
[61] 孙瑞, 孙本华, 高明霞, 等. 长期不同土地利用方式下土土壤微生物特性的变化[J]. 植物营养与肥料学报, 2015, 21(3): 655-663.
Sun R, Sun B H, Gao M X, et al.Changes in soil microbial characteristics under long term different land use modes[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 655-663.
[62] Xiao H C, Sheng H, Zhang L N, et al.How does land-use change alter soil microbial diversity, composition, and network in subtropical China?[J]. Catena, 2023, 231: 107335. doi: 10.1016/j.catena.2023.107335.
[63] Santonja M, Rancon A, Fromin N, et al.Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland[J]. Soil Biology and Biochemistry, 2017, 111: 124-134.
[64] Fan L C, Shao G D, Pang Y H, et al.Enhanced soil quality after forest conversion to vegetable cropland and tea plantations has contrasting effects on soil microbial structure and functions[J]. Catena, 2022, 211: 106029. doi: 10.1016/j.catena.2022.106029.
[65] 杨文娜, 余泺, 罗东海, 等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学, 2022, 43(1): 540-549.
Yang W N, Yu L, Luo D H, et al.The effect of biochar combined with chemical and organic fertilizers on soil phosphatase activity and microbial community[J]. Environmental Science, 2022, 43(1): 540-549.
[66] Chen X, Su Y, He X, et al.Comparative analysis of basidiomycetous laccase genes in forest soils reveals differences at the cDNA and DNA levels[J]. Plant and Soil, 2013, 366: 321-331.
[67] Zhu L Q, Huang R Z, Wang J P, et al.Litter, root, and mycorrhiza input affected soil microbial community structure in Schima superba pure forest in subtropical China[J]. Diversity-Basel, 2023, 15: 82. doi: 10.3390/d15010082.
[68] Field K J, Rimington W R, Bidartondo M I, et al.First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2[J]. New Phytologist, 2015, 205: 743-756.
[69] Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798.
[70] Ma T, Yang Z Y, Shi B W, et al.Phosphorus supply suppressed microbial necromass but stimulated plant lignin phenols accumulation in soils of alpine grassland on the Tibetan plateau[J]. Geoderma, 2023, 431: 116376. doi: 10.1016/j.geoderma.2023.116376.
[71] 吴建平, 王思敏, 蔡慕天, 等. 植物与微生物碳利用效率及影响因子研究进展[J]. 生态学报, 2019, 39(20): 7771-7779.
Wu J P, Wang S M, Cai M T, et al.Review on carbon use efficiency of plants and microbes and its influencing factors[J]. Acta Ecologica Sinica, 2019, 39(20): 7771-7779.
[72] Song L Y, Gong J R, Li X B, et al.Plant phosphorus demand stimulates rhizosphere phosphorus transition by root exudates and mycorrhizal fungi under different grazing intensities[J]. Geoderma, 2022, 423: 115964. doi: 10.1016/j.geoderma.2022.115964.
[73] Muszewska A, Okrasińska A, Steczkiewicz K, et al.Metabolic potential, ecology and presence of associated bacteria is reflected in genomic diversity of Mucoromycotina[J]. Frontiers in Microbiology, 2021, 12: 636986. doi: 10.3389/fmicb.2021.636986.
[74] Grodnitskaya I D, Pashkeeva O E, Startsev V V, et al.Respiratory activity and biodiversity of microbiomes in podzolic soils of post-pyrogenic spruce forests in the Krasnoyarsk Krai and the Komi Republic[J]. Počvovedenie, 2023, 6: 758-773.
文章导航

/