欢迎访问《茶叶科学》,今天是
研究报告

茶园履带式掘耕机设计与试验

  • 沈帅 ,
  • 任宁 ,
  • 郑航 ,
  • 俞国红 ,
  • 陈志东
展开
  • 1.浙江省农业科学院农业装备研究所,浙江 杭州 310021;
    2.农业农村部东南丘陵山地农业装备重点实验室(部省共建),浙江 杭州 310021;
    3.浙江唐诗之路控股集团有限公司,浙江 新昌 312500
沈帅,男,助理研究员,主要从事农产品无损检测技术及农机装备研究。

收稿日期: 2024-08-20

  修回日期: 2024-12-20

  网络出版日期: 2025-04-30

基金资助

2023年浙江省“三农九方”农业科技协作计划项目(2023SNJF046)、茶园履带式掘耕机研发制造推广应用一体化项目

Design and Testing of Tea Garden Crawler Plowing Machine

  • SHEN Shuai ,
  • REN Ning ,
  • ZHENG Hang ,
  • YU Guohong ,
  • CHEN Zhidong
Expand
  • 1. Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
    2. Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China;
    3. Zhejiang Tangshi Road Holding Group Co., Ltd., Xinchang 312500, China

Received date: 2024-08-20

  Revised date: 2024-12-20

  Online published: 2025-04-30

摘要

针对丘陵山区茶园土壤耕作环节面临耕作机械设备不足、设备爬坡性能差等问题,设计研发了一款适用于丘陵山区的茶园履带式掘耕机,以爬坡性能为设计目标,开展底盘主要结构参数设计,通过动力学仿真技术进行掘耕机横坡、纵坡行走能力分析。仿真结果表明,履带式掘耕机横坡最大行驶坡度为22°,纵坡最大行驶坡度为31°。探究掘耕机耕作质量,以理论分析耕作运动轨迹为基础,通过动力学开展耕作前进速度优选,获取掘耕机的最佳耕作前进速度为400~450 mm·s-1。为进一步验证参数合理性和仿真结果可靠性,开展纵坡爬坡田间试验,结果表明,掘耕机在纵坡上最大爬坡角度为32°,与理论爬坡角度误差为3.22%,从而验证了理论计算和仿真的准确性和可靠性。研究结果表明设计的掘耕机具有较好的通过性,能够充分满足丘陵地区上山爬坡需求,为茶园中耕问题提供了一种有效的解决方案。

本文引用格式

沈帅 , 任宁 , 郑航 , 俞国红 , 陈志东 . 茶园履带式掘耕机设计与试验[J]. 茶叶科学, 2025 , 45(2) : 273 -283 . DOI: 10.13305/j.cnki.jts.2025.02.003

Abstract

In response to the problems of inadequate agricultural equipment and poor slope performance in tea gardens of hilly areas, a tracked ploughing machine suitable for hilly tea plantations was designed and developed, with a focus on slope performance. The main structural parameters of the chassis were designed, and the dynamic simulation was used to analyze the machine's ability to traverse across and along slopes. The simulation results show that the maximum slope for the machine to traverse across was 22°, and the maximum slope for the machine to traverse along was 31°. To explore the quality of excavator tillage, based on the theoretical analysis of the tillage movement trajectory, the tillage advance speed was optimized by dynamics, and the optimal tillage advance speed of 400-450 mm·s-1 was obtained for excavators. To further verify the rationality of the parameters and the reliability of the simulation results, field tests were conducted on uphill slopes. The results show that the maximum climbing ability of the machine on uphill slopes was 32°, with an error of 3.22% compared to the theoretical climbing angle. The results validate the accuracy and reliability of the theoretical calculations and simulations, demonstrating that the designed ploughing machine has good maneuverability and can fully meet the uphill climbing needs of hilly areas, providing an effective solution to the problem of tea plantation cultivation.

参考文献

[1] 姜嘉胤, 董春旺, 倪益华, 等. 基于离散元法的茶园仿生铲减阻性能研究[J]. 茶叶科学, 2022, 42(6): 791-805.
Jiang J Y, Dong C W, Ni Y H, et al.Research on drag reduction performance of tea garden bionic shovel based on discrete element method[J]. Journal of Tea Science, 2022, 42(6): 791-805.
[2] 王文明, 宋志禹, 赵映, 等. 我国茶园中耕管理机械研究现状与发展分析[J]. 中国农机化学报, 2021, 42(1): 52-58.
Wang W M, Song Z Y, Zhao Y, et al.Research status and development analysis of cultivation management machinery for tea garden[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 52-58.
[3] 王文明, 肖宏儒, 宋志禹, 等. 茶叶生产全程机械化技术研究现状与展望[J]. 中国农机化学报, 2020, 41(5): 226-236.
Wang W M, Xiao H R, Song Z Y, et al.Research status and prospects of tea production mechanization technology[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 226-236.
[4] 刘琼. 小型茶园耕作管理机械的研制与推广[J]. 湖南农业科学, 2011(7): 54-55.
Liu Q.Development and popularization of cultivation management machinery for small tea garden[J]. Hunan Agricultural Sciences, 2011(7): 54-55.
[5] 杨拥军, 陈力航, 罗意, 等. 我国茶园耕作机械现状与发展对策分析[J]. 湖南农机, 2014, 41(1): 1-3.
Yang Y J, Chen L H, Luo Y, et al.Present status and countermeasures of tillage implement for tea garden[J]. Hunan Agricultural Machinery, 2014, 41(1): 1-3.
[6] 杨拥军, 陈力航, 喻季红, 等. 一种小型茶园中耕机的研制[J]. 茶叶通讯, 2011, 38(4): 11-14.
Yang Y J, Chen L H, Yu J H, et al.The design of a mini-cultivator in tea garden[J]. Journal of Tea Communication, 2011, 38(4): 11-14.
[7] 肖宏儒, 李建国, 秦广明, 等. 高地隙自走式多功能茶园管理机田间试验研究[J]. 中国农机化, 2010(6): 41-44.
Xiao H R, Li J G, Qin G M, et al.Field experimental study on the high-clearance self-propelled multi-function tea farm manager[J]. Chinese Agricultural Mechanization, 2010(6): 41-44.
[8] 徐良, 肖宏儒. 茶园中耕机械缠草机理分析[J]. 中国农机化学报, 2015, 36(2): 25-28.
Xu L, Xiao H R.Analysis of the winding grass mechanism for tea cultivation machinery[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 25-28.
[9] 徐良, 周训谦, 肖洁. 3ZFC-40型茶园中耕机的研制[J]. 农产品加工, 2015(11): 52-54.
Xu L, Zhou X Q, Xiao J.Research of 3ZFC-40 cultivation machinery for tea garden[J]. Farm Products Processing, 2015(11): 52-54.
[10] Zhang L, Zhai Y B, Chen J N, et al.Optimization design and performance study of a subsoiler underlying the tea garden subsoiling mechanism based on bionics and EDEM[J]. Soil and Tillage Research, 2022, 220: 1-15.
[11] 代红朝, 肖宏儒, 梅松, 等. 茶园中耕机械化发展现状与对策分析[J]. 农机化研究, 2017, 39(4): 263-268.
Dai H C, Xiao H R, Mei S, et al.Tea cultivator mechanization development and countermeasures[J]. Journal of Agricultural Mechanization Research, 2017, 39(4): 263-268.
[12] Arkadiusz M, Tomasz C, Wojciech K, et al.Numerical simulation of active track tensioning system for autonomous hybrid vehicle[J]. Mechanical Systems and Signal Processing, 2017, 89(15): 108-118.
[13] Wang X, Taghia J, Katupitiya J.Robust model predictive control for path tracking of a tracked vehicle with a steerable trailer in the presence of slip[J]. IFAC-Papers on Line, 2016, 49(16): 469-474.
[14] Li J Z, Sun S L, Sun C R, et al.Analysis of effect of grouser height on tractive performance of tracked vehicle under different moisture contents in paddy soil[J]. Agriculture, 2022, 12(10): 1-28.
[15] 李明勇, 靳建波, 卜树峰, 等. 基于Simscape和RecurDyn的履带车辆动力学仿真技术研究[J]. 机电产品开发与创新, 2014, 27(5): 69-71.
Li M Y, Jin J B, Bu S F, et al.Dynamic simulation of a tracked vehicle based on RecurDyn and Simscape[J]. Development & Innovation of Machinery & Electrical Products, 2014, 27(5): 69-71.
[16] 陈亚, 尤伟, 章易程, 等. 生命探测履带车过沟性能的仿真分析[J]. 铁道科学与工程学报, 2016, 13(10): 2051-2055.
Chen Y, You W, Zhang Y C, et al.Simulation and analysis of pit-crossing performance of life detection tracked vehicle[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2051-2055.
[17] 吉旭, 唐勇, 林蜀云, 等. 山地履带自走式辣椒收获机底盘动力学仿真与试验[J]. 中国农机化学报, 2022, 43(7): 72-80.
Ji X, Tang Y, Lin S Y, et al.Dynamic simulation and test of the tracked chassis of the mountainous self-propelled pepper harvester[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 72-80.
[18] 李坤, 肖宏儒, 梅松, 等. 低地隙茶园管理机齿耕与旋耕作业性能试验分析[J]. 中国农机化学报, 2015, 36(3): 18-21.
Li K, Xiao H R, Mei S, et al.Performance test analysis of tooth tillage and rotary tillage on the low-clearance tea farm manager[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(3): 18-21.
[19] 刘莫尘, 梁文倩, 肖化超, 等. 履带式自走水力采藕机设计与试验[J]. 农业机械学报, 2023, 54(s2): 61-70.
Liu M C, Liang W Q, Xiao H C, et al.Design and experiment of crawler-type self-propelled hydraulic lotus root harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(s2): 61-70.
[20] 李善军, 陈辉龙, 彭际博, 等. 丘陵山地果园全液压遥控式履带动力底盘设计与试验[J]. 农业机械学报, 2024, 55(2): 119-127.
Li S J, Chen H L, Peng J B, et al.Design and test of hydraulic remote control crawler power chassis for hilly and mountainous orchards[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 119-127.
[21] 殷楚晴. 丘陵山区履带式电动底盘的研制[D]. 长沙: 湖南农业大学, 2021.
Yin C Q.Development of crawler electric chassis in hilly and mountainous areas[D]. Changsha: Hunan Agricultural University, 2021.
[22] 高杉, 张雅秋, 秦宇轩, 等. 电驱动履带底盘的设计与应用[J]. 地质装备, 2023, 24(3): 1-4.
Gao S, Zhang Y Q, Qin Y X, et al.Design and application of electric drive crawler chassis[J]. Geological Equipment, 2023, 24(3): 1-4.
[23] 王海霞, 卢立富, 李加坤, 等. 履带式农机底盘在超湿黏土地面的通过性研究[J]. 山东交通学院学报, 2023, 31(3): 1-6, 21.
Wang H X, Lu L F, Li J K, et al.Passability of tracked agricultural machinery chassis on super wet clay ground[J]. Journal of Shandong Jiaotong University, 2023, 31(3): 1-6, 21.
[24] 姚呈祥, 袁建宁, 潘金坤. 橡胶履带联合收获机仿形底盘行走系统设计与仿真[J]. 中国农机化学报, 2020, 41(2): 107-113.
Yao C X, Yuan J N, Pan J K.Design and simulation analysis of the terrain adaptive chassis’s walking system of rubber track combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 107-113.
[25] 任宁, 黄伟, 俞国红, 等.履带掘耕机耕作分析与试验[J/OA]. 农机化研究, 2024: 1-6[2024-10-29]. https://doi.org/10.13427/j.issn.1003-188X.2025.08.024.
Ren N, Huang W, Yu G H, et al.Analysis and experiment of crawler tiller machine[J/OA]. Journal of Agricultural Mechanization Research, 2024: 1-6[2024-10-29]. https://doi.org/10.13427/j.issn.1003-188X.2025.08.024.
文章导航

/