欢迎访问《茶叶科学》,今天是
研究报告

基于DEM-MBD耦合算法的茶园仿生掘耕机优化与试验

  • 贾治军 ,
  • 姜嘉胤 ,
  • 徐家俊 ,
  • 李杨 ,
  • 董春旺 ,
  • 宋文韬 ,
  • 李凯 ,
  • 韦持章 ,
  • 姚雨晨 ,
  • 姚立健 ,
  • 杨自栋 ,
  • 刘皓央 ,
  • 马蓉
展开
  • 1.浙江农林大学光机电工程学院,浙江 杭州 311300;
    2.中国农业科学院茶叶研究所,浙江 杭州 310008;
    3.浙江川崎茶业机械有限公司,浙江 杭州 311121;
    4.山东省农业科学院茶叶研究所,山东 济南 250100;
    5.广西壮族自治区农业科学院园艺研究所,广西 南宁 530007;
    6.国家林业草原丘陵山地林草机械工程技术研究中心,浙江 杭州 311300;
    7.农业农村部东南丘陵山地农业装备重点实验室(部省共建),浙江 杭州 311300
贾治军,男,硕士研究生,主要从事农业机械化研究。

收稿日期: 2024-10-24

  修回日期: 2024-12-27

  网络出版日期: 2025-04-30

基金资助

广西科技计划项目(桂农科AB241484030)、浙江省农业重大技术协同推广计划(2024ZDXT06)、浙江省“尖兵”研发攻关计划(2022C02010)、中央级公益性科研院所基本科研业务费专项(1610212021004)

Optimization and Testing of Tea Garden Biomimetic Tillage Machine Based on DEM-MBD Coupling Algorithm

  • JIA Zhijun ,
  • JIANG Jiayin ,
  • XU Jiajun ,
  • LI Yang ,
  • DONG Chunwang ,
  • SONG Wentao ,
  • LI Kai ,
  • WEI Chizhang ,
  • YAO Yuchen ,
  • YAO Lijian ,
  • YANG Zidong ,
  • LIU Haoyang ,
  • MA Rong
Expand
  • 1. School of Optoelectronics and Mechanical Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Zhejiang Kawasaki Tea Machinery Co., Ltd., Hangzhou 311121, China;
    4. Tea Research Institute of Shandong Academy of Agricultural Sciences, Jinan 250100, China;
    5. Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
    6. National Engineering Technology Research Center of State Forestry and Grassland Administration on Forestry and Grassland Machinery for Hilly and Mountainous Areas, Hangzhou 311300, China;
    7. Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in South-Eastern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China

Received date: 2024-10-24

  Revised date: 2024-12-27

  Online published: 2025-04-30

摘要

针对茶园耕作过程中因土壤板结粘滞特性导致的机具耕作阻力大、作业质量差等问题,基于鼹鼠爪趾生物力学特征创新设计了一款复合仿生耕作铲,通过四杆机构集成设计研制了新型茶园掘耕机。研究过程中,首先基于离散元法(Discrete element method,DEM)与多体动力学(Multi-body dynamics,MBD)耦合算法对仿生掘耕机的耕作过程进行动态模拟分析。同时借助Design-Expert 13试验设计软件,采用三因素三水平正交试验法(耕作铲入土角度、驱动臂转速、机具前进速度)开展整机工作参数优化研究,确定在耕作深度100 mm时,安装复合仿生耕作铲的茶园仿生掘耕机最佳工作参数组合为入土角度33.506°、驱动臂转速289.923 r·min-1、机具行进速度0.2 m·s-1。基于此优化参数,通过土壤颗粒运动速度分布特征进行耕作扰动对比仿真分析。最后开展田间验证试验,结果表明:相较于传统原型铲,装配复合仿生耕作铲的掘耕机减阻率为5.70%,碎土率提升至91.05%,其他作业评价指标均有所提升,工作性能能够满足茶园耕作的要求,验证了其仿生结构设计的有效性与工程实用性。

本文引用格式

贾治军 , 姜嘉胤 , 徐家俊 , 李杨 , 董春旺 , 宋文韬 , 李凯 , 韦持章 , 姚雨晨 , 姚立健 , 杨自栋 , 刘皓央 , 马蓉 . 基于DEM-MBD耦合算法的茶园仿生掘耕机优化与试验[J]. 茶叶科学, 2025 , 45(2) : 284 -302 . DOI: 10.13305/j.cnki.jts.2025.02.010

Abstract

To solve the problems of high resistance and poor operation efficiency caused by soil compaction and stickiness in tea plantation cultivation, this study designed a tea plantation composite biomimetic tillage shovel based on the mole claw toe as a biomimetic prototype, and integrated it with a four-bar mechanism to develop a tea garden tillage machine. Firstly, a simulation analysis of the tillage process of a tea garden bionic tillage shovel was carried out based on the coupling algorithm of Discrete Element Method (DEM) and Multi Body Dynamics (MBD). At the same time, Design Expert 13 experimental design software was used to design and carry out a three-factor three-level simulation orthogonal combination experiment. It was found that when the tillage depth was 100 mm, the optimal working parameters of the tea garden biomimetic tillage machine with a composite biomimetic tillage shovel were the plowing shovel insertion angle of 33.506°, the driving arm speed of 289.923 r·min-1, and the tillage machine forward speed of 0.2 m·s-1. Subsequently, a comparative analysis of soil disturbance simulation based on soil particle velocity distribution was conducted under these working parameters. Finally, a comparative experiment was conducted in tea gardens using a composite biomimetic tillage shovel and a prototype shovel under the same working parameters. The results show that compared with the prototype shovel, the average resistance of the tea garden biomimetic tillage machine equipped with a composite biomimetic shovel was reduced by 5.70%, and the performance evaluation indicators such as soil fragmentation rate were improved. Its working performance can meet the requirements of tea garden cultivation.

参考文献

[1] 肖宏儒, 韩余, 宋志禹, 等. 茶园机械化耕作技术[J]. 中国茶叶, 2018, 40(1): 5-9.
Xiao H R, Han Y, Song Z Y, et al.Mechanized cultivation technology for tea plantations[J]. China Tea, 2018, 40(1): 5-9.
[2] Yan P, Wu L, Wang D, et al.Soil acidification in Chinese tea plantations[J]. Science of the Total Environment, 2020, 715: 136963. doi: 10.1016/j.scitotenv.2020.136963.
[3] 吴成建, 叶建华, 张健, 等. 生态茶园管理中耕作机应用的实践与探索[J]. 中国茶叶, 2021, 43(3): 53-56.
Wu C J, Ye J H, Zhang J, et al.Practice and exploration of tillage machine in ecological tea garden management[J]. China Tea, 2021, 43(3): 53-56.
[4] 秦宽, 梁小龙, 曹成茂, 等. 茶园切抛组合式开沟刀设计与试验[J]. 农业机械学报, 2021, 52(5): 74-82.
Qin K, Liang X L, Cao C M, et al.Design and experiment of combined cutting and throwing ditching blade for tea garden[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(5): 74-82.
[5] 李坤. 撬翻式茶园深耕机的试验与研究[D]. 北京: 中国农业科学院, 2015.
Li K.Experiment and research of tea deep plowing machine[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[6] 林聪, 郑书河. 山地茶园松土施肥管理机械的研究现状[J]. 农业技术与装备, 2020(4): 43-46.
Lin C, Zheng S H.Research status of fertilizer management machinery for loose soil in mountain tea garden[J]. Agricultural Technology & Equipment, 2020(4): 43-46.
[7] 王晓阳, 潘睿, 强华, 等. 仿生几何结构表面深松铲铲尖设计与试验[J]. 中国农机化学报, 2022, 43(1): 1-6. doi: 10.13733/j.jcam.issn.2095-5553.2022.01.001.
Wang X Y, Pan R, Qiang H, et al.Design and experiment of bionic geometric structure surface on the tip of subsoiler[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 1-6.
[8] 杨玉婉, 佟金, 马云海, 等. 鼹鼠多趾结构特征仿生旋耕刀设计与试验[J]. 农业工程学报, 2019, 35(19): 37-45.
Yang Y W, Tong J, Ma Y H, et al.Design and experiment of biomimetic rotary tillage blade based on multiple claws characteristics of mole rats[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 37-45.
[9] Firouzi S, Azarian F.Propellants of mechanical pruning and plucking of tea (a case of developing countries)[J]. Information Processing in Agriculture, 2019, 6(4): 454-461.
[10] 姜嘉胤, 董春旺, 倪益华, 等. 基于离散元法的茶园仿生铲减阻性能研究[J]. 茶叶科学, 2023, 42(6): 791-805.
Jiang J Y, Dong C W, Ni Y H, et al.Research on drag reduction performance of tea garden bionic shovel based on discrete element method[J]. Journal of Tea Science, 2023, 42(6): 791-805.
[11] Ucgul M, Fielke J M, Saunders C.Three-dimensional discrete element modelling (DEM) of tillage: accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306.
[12] Kim Y S, Lee S D, Baek S M, et al.Development of DEM-MBD coupling model for draft force prediction of agricultural tractor with plowing depth[J]. Computers and Electronics in Agriculture, 2022, 202: 107405. doi: 10.1016/j.compag.2022.107405.
[13] 陈嵘, 李俊锋, 戴佳程, 等. 基于DEM-MBD联合仿真的车致有砟道床破碎分析[J]. 同济大学学报(自然科学版), 2023, 51(10): 1617-1624.
Chen R, Li J F, Dai J C, et al.DEM-MBD co-simulation-based breakage analysis of ballasted bed caused by train movement[J]. Journal of Tongji University (Natural Science), 2023, 51(10): 1617-1624.
[14] Gan J, Zhou Z, Yu A, et al.Co-simulation of multibody dynamics and discrete element method for hydraulic excavators[J]. Powder Technology, 2023, 414: 118001. doi: 10.1016/j.powtec.2022.118001.
[15] Liu Y, Li Y, Dong Y, et al.Development of a variable-diameter threshing drum for rice combine harvester using MBD-DEM coupling simulation[J]. Computers and Electronics in Agriculture, 2022, 196: 106859. doi: 10.1016/j.compag.2022.106859.
[16] 谭新赞, 张斌, 沈从举, 等. 基于EDEM的振动深松整地机参数优化与试验[J]. 农机化研究, 2023, 45(9): 129-135.
Tan X Z, Zhang B, Shen C J, et al.Parameter optimization and test of vibratory subsoiling and soil preparation machine based on EDEM[J]. Journal of Agricultural Mechanization Research, 2023, 45(9): 129-135.
[17] Duan J, Liu D, Xie F, et al.Breakage simulations and experiments of granular fertilisers for optimizing a device of side-deep fertilisation by using the discrete element method[J]. Biosystems Engineering, 2024, 238: 105-114.
[18] Zhao J, Lu Y, Wang X, et al.A bionic profiling-energy storage device based on MBD-DEM coupled simulation optimization reducing the energy consumption of deep loosening[J]. Soil and Tillage Research, 2023, 234: 105824. doi: 10.1016/j.still.2023.105824.
[19] Chen M, Liu X, Hu P, et al.Study on rotor vibration potato-soil separation device for potato harvester using DEM-MBD coupling simulation[J]. Computers and Electronics in Agriculture, 2024, 218: 108638. doi: 10.1016/j.compag.2024.108638.
[20] 朱惠斌, 吴宪, 白丽珍, 等. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制[J]. 农业工程学报, 2022, 38(19): 10-22.
Zhu H B, Wu X, Bai L Z, et al.Development of the biaxial stubble breaking no-tillage device for rice stubble field based on EDEM-ADAMS simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 10-22.
[21] 扈伟昊, 杨发展, 赵国栋, 等. 基于离散元法的立式旋耕刀工作参数分析与优化[J]. 中国农机化学报, 2022, 43(10): 25-32, 41.
Hu W H, Yang F Z, Zhao G D, et al.Analysis and optimization of working parameters of vertical rotary tiller blade based on discrete element method[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 25-32, 41.
[22] 赵淑红, 张鑫, 袁溢文, 等. 粉末状有机肥条施排肥器设计与试验[J]. 农业机械学报, 2021, 53(10): 98-107.
Zhao S H, Zhang X, Yuan Y W, et al.Design and experiment of powder organic fertilizer drilling fertilizer distributor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 53(10): 98-107.
[23] Shi Y, Rex S X, Wang X, et al.Numerical simulation and field tests of minimum-tillage planter with straw smashing and strip laying based on EDEM software[J]. Computers and Electronics in Agriculture, 2019, 166: 105021. doi: 10.1016/j.compag.2019.105021.
[24] 张冲, 范旭辉, 李明森, 等. 基于EDEM的凿式犁铲土壤扰动仿真分析与试验[J]. 农业机械学报, 2022, 53(s2): 52-59.
Zhang C, Fan X H, Li M S, et al.Simulation analysis and experiment of soil disturbance by chisel plow based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(s2): 52-59.
[25] Zhang P, Yuan J, Wang D, et al.Development of a novel pull-cutting end-effector for ex-situ robotic harvesting of white asparagus based on MBD-DEM coupling simulation[J]. Computers and Electronics in Agriculture, 2023, 205: 107641. doi: 10.1016/j.compag.2023.107641.
[26] 张金波. 深松铲减阻耐磨仿生理论与技术[D]. 长春: 吉林大学, 2014.
Zhang J B.Bionic drag reduction and wear-resistant theory and techniques of subsoiler[D]. Changchun: Jilin University, 2014.
[27] 翟宜彬. 基于离散元法的丘陵山地仿生深松机构设计与试验[D]. 杭州: 浙江理工大学, 2023.
Zhai Y B.Design and experiment of a bionic subsoiling mechanism for hilly and mountainous farmland based on DEM[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[28] Fang W, Wang X, Han D, et al.Parameter optimization and disturbance analysis of the film picking device of the chain-type plough layer residual film recovery machine based on DEM-MBD coupling[J]. Computers and Electronics in Agriculture, 2024, 222: 109041. doi: 10.1016/j.compag.2024.109041.
[29] 谷明先. 基于肋条结构的微耕机凿形刀优化设计与试验研究[D]. 重庆: 西南大学, 2022.
Gu M X.Optimization design and experimental study of chisel knife of micro-cultivator based on rib structure[D]. Chongqing: Southwest University, 2022.
[30] 张海鹏. 茶园双圆盘开沟施肥覆土一体机的结构设计与试验研究[D]. 福州: 福建农林大学, 2022.
Zhang H P.Structural design and experimental research of a double-disc trenching and fertilizing and mulching machine for tea plantations[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022.
[31] 曾熠, 蒋啸虎, 吴明亮, 等. 基于DEM-MBD的油茶林分层切抛式开沟刀组研制[J]. 农业工程学报, 2024, 40(8): 30-42.
Zeng Y, Jiang X H, Wu M L, et al.Development of the layered cut and throw ditching blade groups for oil tea forest based on DEM-MBD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(8): 30-42.
[32] 赵建国, 王安, 马跃进, 等. 深松旋耕碎土联合整地机设计与试验[J]. 农业工程学报, 2019, 35(8): 46-54.
Zhao J G, Wang A, Ma Y J, et al.Design and test of soil preparation machine combined subsoiling, rotary tillage and soil breaking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 46-54.
[33] 全腊珍, 石方刚, 全伟, 等. 油菜钵苗移栽机平厢成穴装置设计与试验[J/OL]. 吉林大学学报(工学版), 2023: 1-13[2024-01-16]. doi: 10.13229/j.cnki.jdxbgxb.20230558.
Quan L Z, Shi F G, Quan W, et al. Design and experiment of flat surface and hole - forming machine for rapeseed potted seedlings[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 2023: 1-13.[2024-01-16]. doi: 10.13229/j.cnki.jdxbgxb.20230558.
[34] 廖为强, 陈重成, 鲍地发, 等. 基于离散元法的茶园松土装置结构的优化与仿真试验[J]. 福建农林大学学报(自然科学版), 2023, 52(2): 272-279.
Liao W Q, Chen C C, Bao D F, et al.Structure optimization of tea garden rotary tiller based on discrete element simulation[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 272-279.
[35] Wang J, Xu Y, Wang C, et al.Design and simulation of a trenching device for rice straw burial and trenching based on MBD-DEM[J]. Computers and Electronics in Agriculture, 2023, 207: 107722. doi: 10.1016/j.compag.2023.107722.
[36] 张兆国, 薛浩田, 王一驰, 等. 基于离散元法的三七仿生挖掘铲设计与试验[J]. 农业机械学报, 2022, 53(5): 100-111.
Zhang Z G, Xue H T, Wang Y C, et al.Design and experiment of panax notoginseng bionic excavating shovel based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 100-111.
文章导航

/