欢迎访问《茶叶科学》,今天是

红茶及其发花红砖茶对高血糖模型小鼠的降血糖作用

  • 周阳 ,
  • 肖文军 ,
  • 林玲 ,
  • 袁冬寅 ,
  • 彭影琦 ,
  • 谭春波 ,
  • 张强 ,
  • 龚志华
展开
  • 1. 湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2. 湖南武陵秀峰茶业有限公司,湖南 常德 415000;
    3. 国家植物功能成分利用工程技术研究中心,湖南 长沙 410128
周阳,男,硕士研究生,主要从事茶树生理与品质化学研究方面的研究,87007183@qq.com。

收稿日期: 2018-10-17

  网络出版日期: 2019-08-19

基金资助

国家重点研发计划(2017YFD0400803)、湖南省科技重大专项(2017NK1020)、长沙市科技重大专项(kq1703003)

Hypoglycemic Effects of Black Tea and Fungus Fermented Black Brick Tea on Hyperglycemic Model Mice

  • ZHOU Yang ,
  • XIAO Wenjun ,
  • LIN Ling ,
  • YUAN Dongyin ,
  • PENG Yingqi ,
  • TAN Chunbo ,
  • ZHANG Qiang ,
  • GONG Zhihua
Expand
  • 1. Key Laboratory of Tea Science of Educational Ministration, Hunan Agricultural University, Changsha 410128, China;
    2. Hunan Wuling Xiufeng Tea Co. Ltd., Changde 415000, China;
    3. National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China;

Received date: 2018-10-17

  Online published: 2019-08-19

摘要

以相同鲜叶加工而成的红茶及其发花红砖茶为原料,在应用链脲佐菌素腹腔注射并成功建立高血糖模型小鼠方法的基础上,将90只KM雄性小鼠按每组10只,随机分为正常组、模型组、红茶及发花红砖茶高、中、低剂量组和盐酸二甲双胍片组,连续灌喂28天,探讨了红茶及其发花红砖茶对高血糖模型小鼠的降血糖作用。结果表明,与正常组相比,模型组小鼠体重、饮水、饮食、血糖水平均有极显著差异(P<0.01),且血糖水平达到高血糖标准,说明造模成功;与模型组相比,红茶及发花红砖茶高剂量组的肝脏指数显著下降(P<0.05)、胰腺指数显著上升(P<0.05);中、高剂量组的总胆固醇显著下降(P<0.05),过氧化氢酶、超氧化物岐化酶显著上升(P<0.05);各剂量组的血糖、甘油三酯、丙二醛含量水平显著下降(P<0.05),口服耐糖量、谷胱甘肽过氧化物酶活性及胰岛素含量水平则显著上升(P<0.05),除红茶低剂量组外各剂量组肝糖原含量水平均显著上升(P<0.05),同时可修复受损胰岛;与红茶组相比,发花红砖茶高剂量组在改善胰岛素水平、血糖水平、口服耐糖量、丙二醛水平及肝糖原水平上显著优于红茶高剂量组(P<0.05),中、高剂量组在提高过氧化氢酶、超氧化物岐化酶及谷胱甘肽过氧化物酶的酶活性上显著优于红茶中、高剂量组(P<0.05)。由此表明,红茶及其发花红砖茶均具有降低高血糖模型小鼠血糖的作用,且在作用效果上发花红砖茶优于红茶,但其机制有待进一步探究。

本文引用格式

周阳 , 肖文军 , 林玲 , 袁冬寅 , 彭影琦 , 谭春波 , 张强 , 龚志华 . 红茶及其发花红砖茶对高血糖模型小鼠的降血糖作用[J]. 茶叶科学, 2019 , 39(4) : 415 -424 . DOI: 10.13305/j.cnki.jts.2019.04.006

Abstract

Based on the successfully establishment of hyperglycemia model by intraperitoneal injection of streptozotocin, 90 KM male mice were randomly divided into the normal, model, black tea treated (high, medium, low doses), fungus fermented black brick tea treated (high, medium, low doses) and metformin hydrochloride (n=10/each group) groups, and were continuously administrated for 28 days to study the hypoglycemic effects of black tea and fungus fermented black brick tea processed from the same batch of fresh leaves. The results show that compared with the normal group, the weight, water, diet and blood glucose levels of the model group were significantly different (P<0.01). The blood glucose level of the model group reached the standard of hyperglycemic index and indicates that the model was successful. Compared with the model group, the high dose of black tea treated group and fungus fermented black brick tea treated groups’ liver index were significantly decreased (P<0.05) and the pancreas index were significantly enhanced (P<0.05). The total cholesterols of the middle and high doses of black tea treated groups and fungus fermented black brick tea treated groups were significantly decreased (P<0.05), while the activities of superoxide dismutase and catalase were significantly increased (P<0.05). The blood sugar, triglyceride and malondialdehyde levels of black tea treated groups and fungus fermented black brick tea treated groups were significantly decreased in a dose-dependent manner (P<0.05). Besides, glucose tolerance, activity of glutathione peroxidase, insulin levels were increased significantly in a dose-dependent manner (P<0.05). The damaged structure of pancreas were repaired in black tea treated and fungus fermented black brick tea treated groups. Except for the low-dose black tea treated group, the hepatic glycogen level were enhanced in other black tea treated groups (P<0.05). Compared with the black tea groups, the high-dose fungus fermented black brick tea was significantly superior to the high-dose black tea in improving insulin level, blood sugar level, oral glucose tolerance, malondialdehyde level and liver glycogen level (P<0.05). The middle and high dose groups of fungus fermented black brick tea were also significantly superior to the middle and high dose groups of black tea in increasing the activities of catalase, superoxide dismutase and glutathione peroxidase. The results prompt that both the black tea and fungus fermented black brick tea could reduce the blood glucose of hyperglycemic mice, and fungus fermented black brick tea had better effects than black tea. The underlying mechanism needs further investigation.

参考文献

[1] Amitani H, Asakawa A, Cheng K, et al.Hydrogen improves glycemic control in typeⅠdiabetic animal model by promoting glucose uptake into skeletal muscle[J]. Plos One, 2012, 8(1): e53913. DOI: 10.1371/journal.pone.0053913.
[2] Ichinose K, Kawasaki E, Eguchi K.Recent advancement of understanding pathogenesis of typeⅠdiabetes and potential relevance to diabetic nephropathy[J]. American Journal of Nephrology, 2007, 27(6): 554-564.
[3] Homo-Delarche F, Drexhage H A.Immune cells, pancreas development, regeneration and typeⅠdiabetes[J]. Trends in Immunology, 2004, 25(5): 222-229.
[4] 李甜, 张亚楼, 陈龙, 等. 链脲佐菌素诱导C57小鼠Ⅰ型糖尿病模型的研究[J]. 现代生物医学进展, 2014, 14(26): 5031-5033.
[5] 孙国鹏, 尹国安, 张艳芳. 低剂量链脲佐菌素诱导迟发性Ⅰ型糖尿病小鼠模型[J]. 黑龙江八一农垦大学学报, 2013, 25(3): 30-33, 41.
[6] 魏荣锐, 苗明三. 糖尿病动物模型及特点分析[J]. 中医研究, 2010, 23(2): 6-11.
[7] 尹纯, 孙艺红. II型糖尿病血脂异常及治疗[J]. 心血管病学进展, 2017, 38(5): 488-492.
[8] 于淑池, 苏涛, 杨建民, 等. 安吉白茶多糖对实验性糖尿病小鼠的降血糖作用研究[J]. 茶叶科学, 2010, 30(3): 223-228.
[9] 黄智璇, 欧阳蒲月. 灵芝多糖降血糖作用的研究[J]. 亚太传统医药, 2008, 31(8): 24-25.
[10] 张梅, 吴越, 慕春海, 等. 苍耳子水提取物对实验性糖尿病小鼠的降血糖作用研究[J]. 石河子大学学报(自然科学版), 2008, 26(5): 549-551.
[11] 梁燕, 王岳飞, 谢争珍, 等. 茶桑混合袋泡茶降血糖作用的实验研究[J]. 茶叶科学, 2008, 28(5): 358-362.
[12] 张元, 林强, 崔玉梅, 等. 乌龙茶多糖的酶法提取及降血糖活性初步研究[J]. 中国现代应用药学, 2008, 25(4): 286-288.
[13] 何学斌, 薛存宽, 魏守蓉, 等. 茶多糖对α-淀粉酶活性抑制作用及对糖尿病模型大鼠血糖影响研究[J]. 医药导报, 2007, 26(11): 1284-1286.
[14] Li S, Chen H, Wang J, et al.Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice[J]. International Journal of Biological Macromolecules. 2015, 81: 967-974.
[15] 倪德江, 陈玉琼, 谢笔钧, 等. 绿茶、乌龙茶、红茶的茶多糖组成、抗氧化及降血糖作用研究[J]. 营养学报, 2004, 26(1): 57-60.
[16] 刘琴琴, 叶珊, 罗文娟, 等. 湖南茯茶对糖尿病小鼠血糖的影响[J]. 中国现代药物应用, 2013, 7(13): 220-221.
[17] 彭晓赟, 赵运林, 何小书, 等. 茯砖茶茶叶品质和保健功能的研究概况[J]. 湖南城市学院学报(自然科学版), 2011, 20(4): 45-48.
[18] 蔡正安, 刘素纯, 刘仲华, 等. 茯砖茶中冠突散囊菌纤维素酶的酶学性质研究[J]. 茶叶科学, 2010, 30(1): 57-62.
[19] 刘建宇, 刘丹, 张辉, 等. 安化黑茶化学成分及药理活性研究进展[J]. 中草药, 2017, 48(7): 1449-1455.
[20] 张冬英, 邵宛芳, 蒋智林, 等. 普洱茶分离组分的降糖降脂活性作用研究[J]. 云南农业大学学报, 2010, 25(6): 831-834.
[21] 吴扬, 胡志和, 郭嘉, 等. 乳铁蛋白铬对实验性糖尿病小鼠血糖水平的影响[J]. 食品科学, 2010, 31(13): 253-258.
[22] 方玉, 刘刚, 张晓喻, 等. 青刺尖茶汤对便秘模型小鼠润肠通便的效果[J]. 食品科学, 2014, 35(11): 265-268.
[23] 杨蕾, 舒娈, 姚冬冬, 等. 葛根素对链脲佐菌素诱导的糖尿病小鼠降糖作用[J]. 中国医院药学杂志, 2014, 34(16): 1338-1342.
[24] 陈亚蓝. 普洱茶茶色素对SD大鼠脂质代谢的影响及其作用机理研究[D]. 天津: 天津商业大学, 2016.
[25] 刘紫萱, 张继媛, 肖萍, 等. 3种植物活性成分联合改善2型糖尿病小鼠氧化应激效果研究[J]. 食品研究与开发, 2017, 38(8): 5-10.
[26] Awadallah S M, Ramadan A R, Nusier M K.Haptoglobin polymorphism in relation to antioxidative enzymes activity in type 2 diabetes mellitus[J]. Diabetes & Metabolic Syndrome Clinical Research & Reviews, 2013, 7(1): 26-31.
[27] Hassan A.Amelioration of altered antioxidant enzyme activity by Satureja khuzistanica essential oil in alloxan-induced diabetic rats[J]. Chinese Journal of Natural Medicines, 2014, 12(9): 672-676.
[28] 陈刚. 茶多糖对代谢综合征大鼠糖脂代谢的干预作用及机理研究[D]. 上海: 复旦大学, 2011.
[29] 徐淑云, 卞如濂, 陈修. 药理实验方法学[M]. 2版. 北京: 人民卫生出版社, 1991.
[30] 王瑶, 季宇彬, 陈明苍. 中药与肠道菌群相互作用的研究进展[J]. 中国医药导报, 2012, 9(2): 12-13.
[31] 杨富亚, 许波, 李俊俊, 等. 普洱茶渥堆过程中复合酶制剂的应用研究[J]. 安徽农业科学, 2013, 41(9): 4057-4060.
[32] 邵春甫, 贾黎晖, 李长文, 等. 普洱茶茶褐素研究进展[J]. 天津化工, 2011, 25(6): 1-3, 11.
罗龙新, 吴小崇, 邓余良, 等. 云南普洱茶渥堆过程中生化成分的变化及其与品质形成的关系[J]. 茶叶科学, 1998, 18(1): 58-60.
文章导航

/