欢迎访问《茶叶科学》,今天是

一株拮抗茶炭疽病菌的木霉菌的分离、筛选及鉴定

  • 赵兴丽 ,
  • 张金峰 ,
  • 周玉锋 ,
  • 赵玳琳 ,
  • 张莉 ,
  • 周罗娜 ,
  • 陶刚
展开
  • 1. 贵州省农业科学院农业生物技术重点实验室,贵州 贵阳 550006;
    2. 贵州省农业科学院茶叶研究所,贵州 贵阳 550006;
    3. 贵州省农业科学院植物保护研究所,贵州 贵阳 550006;
    4. 贵州省农业科学院草业研究所,贵州 贵阳 550006
赵兴丽,女,硕士,主要从事植物真菌病害的防治方面的研究。

收稿日期: 2018-12-06

  网络出版日期: 2019-08-19

基金资助

国家现代农业(茶叶)产业技术体系建设专项资金项目(CARS-19)、国家重点研发计划项目子课题(2016YFD0200906、2017YFD0201102)、黔科合平台人才[2017]5717号、黔农科院自主创新科研专项字[2014]009号

Isolation, Screening and Identification of A Strain of Trichoderma Antagonizing Tea Anthracnose

  • ZHAO Xingli ,
  • ZHANG Jinfeng ,
  • ZHOU Yufeng ,
  • ZHAO Dailin ,
  • ZHANG Li ,
  • ZHOU Luona ,
  • TAO Gang
Expand
  • 1. Guizhou Academy of Agricultural Sciences key laboatory of agricultural biotechnology, Guiyang 550006, China;
    2. Guizhou Academy of Agricultural Sciences tea research institute, Guiyang 550006, China;
    3. Guizhou Academy of Agricultural Sciences institute of Plant Protection, Guiyang 550006, China;
    4. Guizhou Academy of Agricultural Sciences grass industry research institute, Guiyang 550006, China

Received date: 2018-12-06

  Online published: 2019-08-19

摘要

为获得对茶炭疽病有生物防治效果的拮抗木霉菌,本文采用梯度稀释法从茶树根际土壤中分离获得23株木霉菌,并通过平板对峙法和抑菌圈法从中筛选出1株强拮抗茶炭疽病菌的木霉菌株LS17110205。该菌株对茶炭疽病菌抑菌率达76.96%,并能在茶炭疽病菌菌落上产生大量白色菌丝及绿色分生孢子,使茶炭疽病菌菌落萎缩,颜色变暗;其发酵液也能有效抑制茶炭疽病菌菌丝生长,抑制率达70.08%。扫描电镜观察发现,菌株LS17110205发酵液能使茶炭疽菌菌丝表面皱缩。基于形态学特征结合分子系统发育树分析,将菌株LS17110205鉴定为Trichoderma asperelloides。该研究结果为茶炭疽病的生物防治提供一定的理论基础。

本文引用格式

赵兴丽 , 张金峰 , 周玉锋 , 赵玳琳 , 张莉 , 周罗娜 , 陶刚 . 一株拮抗茶炭疽病菌的木霉菌的分离、筛选及鉴定[J]. 茶叶科学, 2019 , 39(4) : 431 -439 . DOI: 10.13305/j.cnki.jts.2019.04.008

Abstract

To obtain antagonistic Trichoderma for biocontrol of tea anthracnose, the twenty-three Trichoderma strains were isolated from Camellia sinensis rhizosphere-soil by taking gradient dilution. Among them, the strain LS17110205 against tea anthracnose was screened by using dual-culture and inhibition zone assay. The results show that the inhibitory rate of LS17110205 against tea anthracnose was up to 76.96% and a large number of white hyphae and green spores were produced on the colony of tea anthracnose, which caused the tea anthracnose colony to shrink and became dark. The fermentation liquid of LS17110205 was effective against pathogen hyphae, and the inhibitory rate was 70.08%. The results show that the fermentation of the strain LS17110205 caused the tea anthracnose mycelia to shrink on the surface by scanning electron microscope analysis. LS17110205 was identified as Trichoderma asperelloides on the basis of the morphological characteristics and phylogenetic tree. The results provided theoretical basis in biocontrol of tea anthracnose.

参考文献

[1] 刘威, 袁丁, 尹鹏, 等. 茶树炭疽病的研究进展[J]. 热带农业科学, 2016, 36(11): 20-26.
[2] 李杨, 李河, 周国英, 等. 海南省3种油茶炭疽病菌的致病力及其生物学特性研究[J]. 热带作物学报, 2016, 37(10): 1956-1961.
[3] 赖建东. 炭疽菌侵染后茶树cDNA-AFLP体系构建和基因差异表达研究[D]. 福州: 福建农林大学, 2016.
[4] 台莲梅, 高俊峰, 左豫虎, 等. 长枝木霉菌T115D诱导大豆叶片防御酶活性及疫病盆栽防治效果[J]. 中国生物防治学报, 2018, 34(6): 897-905.
[5] Luigi L, Giuseppe C, Maria B M M, et al. Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates[J]. Phytochemistry, 2019, 157: 158-167.
[6] Daliakopoulos I N, ApostolakisA K, Wagner A, et al. Effectiveness of Trichoderma harzianum in soil and yield conservation of tomato crops under saline irrigation[J]. Catena, 2019, 175: 144-153.
[7] Braithwaite M, Johnston P R, Ball S L, et al.Trichoderma down under: species diversity and occurrence of Trichoderma in New Zealand[J]. Australasian Plant Pathol, 2017, 46(1): 11-30.
[8] Cook R J, Baker K F.The nature and practice of biological control of plant pathogen[M]. Sao Paulo: American phytopathological society, 1983: 318.
[9] Ciro H S, Juliana F S D, Ana P C S, et al. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants[J]. Biocontrol science and technology, 2018, 28(2): 142-156.
[10] Kapuganti J G, Luis A J M, Yariv B. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots[J]. Molecular Plant-Microbe Interactions, 2014, 27(4): 307-314.
[11] Anil K, Toshy A, Renu K, et al.In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd[J]. European Journal of Plant Pathology, 2015, 141(3): 523-543.
[12] 徐文, 黄媛媛, 黄亚丽, 等. 木霉-植物互作机制的研究进展[J]. 中国生物防治学报, 2017, 33(3): 408-414.
[13] Verma DP, Mouli BC.Scope for biofertilizers in tea cultivation in South India[J]. Planters Chronicle. 1995, 90(10): 495-497, 499.
[14] Onsando J M, Waudo S W.Interaction between Trichoderm a species and Armillaria root rot fungus of tea in Kenya[J]. International Journal of Pest Management. 1994, 40(1): 69-74.
[15] 高旭晖, 高曙晖. 茶树叶面微域环境的病理剖析[J]. 中国茶叶加工, 2000(4): 34-37.
[16] 陈书华, 李梅, 蒋细良, 等. 防治人参锈腐病木霉菌的筛选及防治效果[J]. 中国生物防治学报, 2016, 32(2): 265-269.
[17] White T J, Bruns T D, Lee S B, et a1. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//Innis M A, Gelfand D H, Sninsky J J, et a1. PCR protocols: a guide to methods and applications. San Diego: Acad. Press, 1990: 315-322
[18] Stamatakis A.RAx ML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models[J]. Bioinformatics, 2006, 22(21): 2688-2690.
[19] 杨合同. 木霉分类与鉴定[M]. 北京: 中国大地出版社, 2009: 65-66.
[20] Samuels G J.Trichoderma: Systematics, the sexual state, and ecology[J]. Phytopathology, 2006, 96(2): 195-206.
[21] Wieland M, Renate M, Thomas B, et al.The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate[J]. Current Genetics, 1992, 21(1): 27-30.
[22] Braithwaite M, Johnston P R, Ball S L, et al.Trichoderma down under: spesies diversity and occurrence of Trichoderma in New Zealand[J]. Australasian Plant Pathol, 2017, 46(1): 11-30.
[23] Mahmoud H E, Amgad A S, Anas E, et al.Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium Wilt[J]. Plant Pathol. J, 2015, 31(1): 50-60.
[24] 张广志, 杨合同, 张新建, 等. 木霉现有种类名录[J]. 菌物学报, 2014, 33(6): 1210-1230.
[25] Pratik J, Pandey R N.Morphological and molecular characterization for identification of isolates of Trichoderma spp. From rhizospheric soils of crops in middle Gujarat[J]. Indian Phytopath, 2017, 70(2): 238-245.
[26] 朱克恭. 树木炭疽病[J]. 森林病虫通讯, 1989(2): 37-40.
[27] 刘红艳, 李维, 向芬, 等. 茶炭疽病拮抗放线菌的分离筛选与鉴定[J]. 茶叶通讯, 2017, 44(4): 24-27.
[28] Gyoung H K, Myoung T L, Jae S H, et al.Biological control of tea anthracnose using an antagonistic bacterium of bacillus subtilis isolated from tea leaves[J]. Plant Pathology. 2009, 25(1): 99-102.
[29] 赵兴丽, 陶刚, 赵玳琳, 等. 钩状木霉ACCC31649的GFP标记及其对辣椒定殖和促生作用[J]. 植物营养与肥料学报, 2017, 23(5): 1276-1285.
[30] 徐文, 黄媛媛, 黄亚丽, 等. 木霉-植物互作机制的研究进展[J]. 中国生物防治学报, 2017, 33(3): 408-414.
[31] 冯俊清. 木霉的分离鉴定及对辣椒白绢病抑制效果和机制研究[D]. 长沙: 湖南农业大学, 2010.
[32] Hanhong B, Daniel P R, Hyoun S L, et al.Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms[J]. Molecular Plant-Microbe Interactions, 2011, 24(3): 336-351.
[33] 姬承东, 李剑峰. 高尔夫草坪蘑菇圈真菌拮抗木霉菌株的筛选及其抑菌作用[J]. 草原与草坪, 2017, 37(3): 81-85.
[34] 刘明鑫, 马光恕, 廉华, 等. 棘孢木霉T437对黄瓜幼苗根系生理特性及立枯病防效的研究[J]. 现代化农业, 2018 (6): 29-31.
[35] Woo S L, Di B P, Senatore M, 等. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy[J]. 浙江大学学报(农业与生命科学版), 2004, 30(4): 469-470.
[36] 池玉杰, 伊洪伟. 生防长枝木霉菌培养特性及形态学与系统发育学鉴定[J]. 东北林业大学学报, 2016, 44(1): 103-106, 119.
[37] 章初龙, 徐同. 木霉属及其有性型分类学与分子系统学研究进展[J]. 浙江大学学报(农业与生命科学版), 2003, 29(4): 109-118.
[38] 袁志林, 陈益存, 章初龙, 等. 中国木霉属内生真菌一个新记录种 Trichoderma chlorosporum(英文)[J]. 菌物学报, 2008, 27(4): 608-610.
文章导航

/