为明确茶树光合活性和光系统Ⅱ(PSⅡ)的光抑制对海拔梯度的响应规律,以茶树品种庐山本地群体种为材料,观测了庐山5个不同海拔高度茶树叶片的光合气体交换和叶绿素荧光参数。结果表明,叶片厚度、最大净光合速率(Pnmax)、PSⅡ最大相对电子传递速率[rETR(Ⅱ)max]、光补偿点(Ic)、光饱和点(Isat)、半饱和光强(Ik)、水分利用效率(WUE)等随海拔升高呈增加趋势,水汽压亏缺(VPD)、气孔导度、蒸腾速率、胞间CO2浓度、暗呼吸速率(Rd)等随海拔升高而呈下降趋势。PSⅡ潜在最大光化学量子产量(Fv/Fm)随海拔升高而增加;PSⅡ非调节性能量耗散量子产量[Y(NO)]随海拔升高而降低。PSⅡ实际光化学量子产量[Φ(Ⅱ)]、光化学淬灭(qP)、PSⅡ相对电子传递速率[rETR(Ⅱ)]均随海拔升高而增加。综上分析,茶树在庐山低海拔处的光合作用和PSⅡ活性显著低于高海拔处,这与低海拔处叶片PSⅡ受到光抑制密切相关。
To illustrate the photosynthetic response and photosystem Ⅱ (PSⅡ) photoinhibition of tea leaves to altitudinal gradient, native tea population of Camellia sinensis grown in the cloudy and misty Lushan Mount was measured in terms of photosynthetic gas exchange and chlorophyll fluorescence. Results show that the leaf thickness, maximum photosynthesis rate (Pnmax), maximum relative electron transport rate of PSⅡ [rETR(Ⅱ)]max, compensation irradiation (Ic), saturation irradiation (Isat), half saturation irradiation (Ik) and water usage efficiency (WUE) increased with the altitude increased. While vapor pressure deficit (VPD), stomatal conductance, transpiration rate, intercellular CO2 and dark respiration rate (Rd) displayed an opposite trend. The maximum potential photochemical efficiency of PSⅡ (Fv/Fm) increased while the quantum yield of non-regulated energy dissipation of PSⅡ [Y(NO)] decreased with the altitude increased. The effective photochemical quantum yield of PSⅡ [Φ(Ⅱ)], photochemical quenching (qP) and relative electron transport rate of PSⅡ [rETR(Ⅱ)] all increased at higher altitudes. Overall, tea trees at lower altitudes exhibited decrease of photosynthetic performance compared to those at higher altitudes, due to photoinhibition of PSⅡ.
[1] 张宏达, 任善湘. 中国植物志第49卷第3册[M]. 北京: 科学出版社, 1998: 130.
[2] Wang H, Prentice I C, Davis T W, et al.Photosynthetic responses to altitude: an explanation based on optimality principles[J]. New Phytologist, 2017, 213(3): 976-982.
[3] 罗旭. 不同高海拔对金冠苹果光合特性和果实品质的影响[D]. 雅安: 四川农业大学, 2013: 5-6.
[4] 马力, 黄纪刚, 吴昊. 庐山云雾茶气候品质分析[J]. 中国高新区, 2017(23): 229-230.
[5] Rabinowitch E.Photosynthesis[J]. Annual Review of Physical Chemistry, 1951, 2(1): 361-382.
[6] Galston A W.Photosynthesis as a basis for life support on earth and in space[J]. Bioscience, 1992, 42(7): 490-494.
[7] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 51-100.
[8] Umena Y, Kawakami K, Shen J R, et al.Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 A?[J]. Nature, 2011, 473(7345): 55-60.
[9] Ja?rvi S, Suorsa M, Aro E M. Photosystem Ⅱ repair in plant chloroplasts-regulation, assisting proteins and shared components with photosystem Ⅱ biogenesis[J]. BBA-Bioenergetics, 2015, 1847(9): 900-909.
[10] Lu Y.Identification and roles of photosystem Ⅱ assembly, stability, and repair factors in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7: 168. DOI: 10.3389/fpls.2016.00168.
[11] Aro E M, Virgin I, Andersson B.Photoinhibition of photosystem Ⅱ: inactivation, protein damage and turnover[J]. BBA-Bioenergetics, 1993, 1143(2): 113-134.
[12] 张子山. 低温弱光胁迫下黄瓜叶片光系统Ⅰ与光系统Ⅱ的相互作用[D]. 泰安: 山东农业大学, 2013: 15-17.
[13] Huang W, Zhang S B, Cao K F.The different effects of chilling stress under moderate light intensity on photosystem Ⅱ compared with photosystem I and subsequent recovery in tropical tree species[J]. Photosynthesis Research, 2010, 103(3): 175-182.
[14] Takahashi S, Murata N.How do environmental stresses accelerate photoinhibition?[J] Trends in Plant Science, 2008, 13(4): 178-182.
[15] 程冬梅, 张志勇, 周赛霞, 等. 三种常绿阔叶树光系统Ⅱ在低温胁迫下的光抑制及恢复[J]. 广西植物, 2018, DOI: 10.11931/guihaia.gxzw201808011.
[16] 吴道良. 红河州不同海拔高度茶树主要品质成分与生理学特性的变化[D]. 武汉: 华中农业大学, 2008.
[17] 施嘉璠, 谢序宾, 唐茜, 等. 茶叶光合作用强度的因素再探[J]. 四川农业大学学报, 1988, 1: 9-14.
[18] Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637-640.
[19] Platt T, Gallegos C L, Harrison W G.Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Journal of Marine Research, 1980, 38(4): 687-701.
[20] Togashi H F, Prentice I C, Atkin O K, et al.Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis[J]. Biogeosciences, 2018, 15(11): 3461-3474.
[21] 李存信, 林德辉. 不同海拔地区种植的水稻叶片光合作用特征的比较[J]. 云南植物研究, 1986, 8(4) :459-466.
[22] 韦玉, 李熙萌, 桑卫国, 等. 不同海拔高度矮嵩草的光合响应差异[J]. 生态科学, 2014, 33(6): 1160-1164.
[23] Woodward F.The differential temperature responses of the growth of certain plant species from different altitudes. Ⅱ. Analyses of the control and morphology of leaf extension and specific leaf area of Phleum bertolonii D. C. and P. alpinum L[J]. New Phytologist, 1979, 82(2): 397-405.
[24] Hovenden M J, Vander Schoor J K. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii[J]. New Phytologist, 2006, 169(2): 291-297.
[25] 张兰, 魏吉鹏, 沈晨, 等. 秋茶光合作用与品质成分变化的分析[J]. 茶叶科学, 2018, 38(3): 271-280.
[26] 李鑫, 张丽平, 张兰, 等. 茶园高温干旱灾害防控技术[J]. 中国茶叶, 2018(7): 38-41.
[27] 孙君, 朱留刚, 林志坤, 等. 茶树光合作用研究进展[J]. 福建农业学报, 2015, 30(12): 1231-1237.
[28] 陶汉之. 茶树光合生理的研究[J]. 茶叶科学, 1991, 11(2): 169-170.
[29] 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39(6): 1123-1135.
[30] Reich P B, Sendall K M, Stefanski A, et al.Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 2018, 562(7726): 263-267.
[31] Pepin N, Lundquist J.Temperature trends at high elevations: patterns across the globe[J]. Geophysical Research Letters, 2008, 35(14): L14701. DOI: 10.1029/2008GL034026.
[32] Rangwala I, Miller J R.Climate change in mountains: a review of elevation-dependent warming and its possible causes[J]. Climatic Change, 2012, 114(3/4): 527-547.