欢迎访问《茶叶科学》,今天是

自然低温对茶树内源激素含量的影响

  • 曾光辉 ,
  • 马青平 ,
  • 王伟东 ,
  • 周琳 ,
  • 尹盈 ,
  • 黎星辉
展开
  • 1. 温州科技职业学院,浙江 温州 325006;
    2. 南京农业大学园艺学院,江苏 南京210095
曾光辉,男,副教授,主要从事园艺作物生理生态研究。

收稿日期: 2015-08-17

  网络出版日期: 2019-08-23

基金资助

现代农业产业技术体系建设专项资金(CARS-23)、国家自然科学基金(31470690)、南京市科技计划(201301076)、浙江省教育厅高等学校访问学者专业发展项目(FX2012146)

Effect of Natural Low-temperature on Endogenous Hormones of Camellia sinensis (L.) Kuntze Plant

  • ZENG Guanghui ,
  • MA Qingping ,
  • WANG Weidong ,
  • ZHOU Lin ,
  • YIN Ying ,
  • LI Xinghui
Expand
  • 1. Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China;
    2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2015-08-17

  Online published: 2019-08-23

摘要

以南京中山陵茶园中十年生龙井长叶茶树为试验材料,用酶联免疫法(ELISA)测定自然低温下茶树叶片内源激素含量的变化,以探讨自然低温下茶树内源激素变化规律。结果显示,自然越冬期间,茶树叶片中吲哚乙酸(IAA)含量的波动幅度最大,脱落酸(ABA)次之,而赤霉素(GA3)与玉米素核苷(ZR)波动幅度较小;同时,除了ABA外,茶树其他内源激素IAA、ZR和GA3含量变化趋势一致;激素间比值变化和相关性分析显示ZR与GA3、ZR与IAA、IAA与GA3含量变化极显著相关,ABA与IAA、ABA与ZR呈显著正相关。试验结果表明,茶树内源激素之间关系密切,茶树可能通过调控ABA/(GA3+IAA+ZR)的比值来适应自然低温环境。

本文引用格式

曾光辉 , 马青平 , 王伟东 , 周琳 , 尹盈 , 黎星辉 . 自然低温对茶树内源激素含量的影响[J]. 茶叶科学, 2016 , 36(1) : 85 -91 . DOI: 10.13305/j.cnki.jts.2016.01.011

Abstract

To understand the changes of endogenous hormones in tea plant [Camellia sinensis(L.) O. Kuntze] under natural low-temperature, ten-year-old tea plants of the cultivar ‘Longjingchangye’ were used as the material and the changes of endogenous hormones content were determined by enzyme-linked immunosorbent assay (ELISA). The results showed that the fluctuation amplitude of indole acetic acid (IAA) content is highest among all detected hormones during overwintering period. The change of abscisic acid (ABA) content was smaller than IAA but higher than that of gibberellins (GA3) and zeatinriboside (ZR). In addition, the changing trends of IAA, ZR and GA3 content is consistent, while the trend of ABA is different from them. Furthermore, the changes between ZR and GA3, ZR and IAA, IAA and GA3 content were significantly related. As well, there are significant positive correlations between ABA and IAA, ZR, respectively. All of the above results suggest that endogenous hormones in tea plant are closely related under natural low-temperature. Tea plant may regulate the ratio of ABA/(GA3 + IAA + ZR) to adapt to low temperature.

参考文献

[1] 邹中伟, 房婉萍, 张定, 等. 低温胁迫下茶树基因表达的差异分析[J]. 茶叶科学, 2008, 28(4): 249-254.
[2] 朱全武, 范凯, 谢艳兰, 等. 植物低温胁迫响应miRNAs及其在茶树抗寒研究中的应用[J]. 茶叶科学, 2013, 33(3): 212-220.
[3] Peleg Z, Blumwald E.Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295.
[4] Baron K N, Schroeder D F, Stasolla C.Transcriptional response of abscisic acid (ABA) metabolism and transport to coldand heat stress applied at the reproductive stage of development in Arabidopsisthaliana[J]. Plant Science, 2012, 188: 48-59.
[5] Durbak A, Yao H, McSteen P. Hormone signaling in plant development[J]. Current opinion in plant biology, 2012, 15(1): 92-96.
[6] Du H, Wu N, Chang Y, et al.Carotenoid deficiency impairs ABA and IAA biosynthesisand differentially affects drought and cold tolerance in rice[J]. Plant molecular biology, 2013, 83(4): 475-488.
[7] 曲凌慧, 车永梅, 刘新, 等. ABA和JA等激素参与葡萄对低温胁迫的应答[J]. 青岛农业大学学报: 自然科学版, 2010, 27(1): 36-41.
[8] Xu X X, Shao H B, Mi Y Y, et al.Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions[J]. Critical Reviews in Biotechnology, 2010, 30(3): 222-230.
[9] Pan G S, Masaki T, Shigeki K.A study on the relationships between the growth of tea and endogenous hormones IAA and ABA[J]. Acta Agriculturae Universitatis Zhejiangensis, 1992, 18(S): 133-137.
[10] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理: 第一报[J]. 茶叶, 2000, 26(3): 139-143.
[11] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理: 第二报[J]. 茶叶, 2000, 26(4): 200-204.
[12] 潘根生, 沈生荣, 吴伯千, 等. 茶树新梢生育过程内源激素水平的变化[J]. 茶叶科学, 1997, 17(增刊1): 86-91.
[13] 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J]. 中国农业科学, 1996, 29(35): 9-15.
[14] 吴曼, 张文会, 王荣, 等. ‘红丽’海棠早实植株发育过程中内源激素变化[J]. 园艺学报, 2013, 40(1): 10-20.
[15] 李宗霆, 周燮. 植物激素及其免疫检测技术[M]. 南京: 江苏科学技术出版社, 1996: 279-286.
[16] Golenberg E W, West N W.Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants[J]. American Journal of Botany, 2013, 100(6): 1022-1037.
[17] Miransari M, Smith D L.Plant hormones and seed germination[J]. Environmental and Experimental Botany, 2014, 99: 110-121.
[18] Cheng Y Q, Liu J F, Yang X D, et al.Construction of ethylene regulatory network based on the phytohormones related gene transcriptome profiling and prediction of transcription factor activities in soybean[J]. Acta Physiologiae Plantarum, 2013, 35(4): 1303-1317.
[19] 姚永宏, 徐泽, 侯渝嘉, 等. 秋季茶树内源激素的ELISA分析及其在不同器官中的分布[J]. 渝西学院学报: 自然科学版, 2005, 4(4): 26-33.
[20] Cao F Y, Yoshioka K, Desveaux D.The roles of ABA in plant-pathogen interactions[J]. Journal of Plant Research, 2011, 124(4): 489-499.
[21] Lee S C, Luan S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J]. Plant Cell and Environment, 2012, 35(1): 53-60.
[22] Nakamura T, Yazaki J, KishimotoN, et al. Comparison of long-term up-regulated genes during induction of freezing tolerance by cold and ABA in bromegrass cell cultures revealed by microarray analyses[J]. Plant Growth Regulation, 2013, 71(2): 113-136.
[23] Danquah A, Zelicourt A D, Colcombet J, et al.The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Plant Biotechnology, 2014, 32(1): 40-52.
[24] Hansen H, Dörffling K.Root-derived trans-zeatinriboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance?[J]. Functional Plant Biology,2003, 30(4): 365-375.
[25] 张根发, 王舒静, 张桂芳, 等. 低温和植物生长调节物质处理对好好芭无性系试管苗抗寒相关酶类活性的影响[J]. 中国油料作物学报, 2003, 25(3): 59-63.
[26] Wang C R, Yang A F, Yin H Y, et al.Influence of water stress on endogenous hormone contents and cell damage of maize seedlings[J]. Journal of Integrative Plant Biology, 2008, 50(4): 427-434.
文章导航

/