欢迎访问《茶叶科学》,今天是

茶叶生物化学研究进展

  • 宛晓春 ,
  • 李大祥 ,
  • 张正竹 ,
  • 夏涛 ,
  • 凌铁军 ,
  • 陈琪
展开
  • 安徽农业大学茶叶生物化学与生物技术农业部、教育部重点实验室,安徽 合肥 230036
宛晓春,男,博士,教授,主要从事茶叶生物化学的教学和科研。E-mail: xcwan@ahau.edu.cn

收稿日期: 2014-10-10

  修回日期: 2014-12-20

  网络出版日期: 2019-08-23

基金资助

教育部“长江学者和创新团队发展计划”(IRT1101)、现代农业产业体系专项资金(CARS—23)、国家精品课程《茶叶生物化学》、安徽省科技计划项目(1406C085017)

Research Advance on Tea Biochemistry

  • WAN Xiaochun ,
  • LI Daxiang ,
  • ZHANG Zhengzhu ,
  • XIA Tao ,
  • LING Tiejun ,
  • CHEN Qi
Expand
  • Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China

Received date: 2014-10-10

  Revised date: 2014-12-20

  Online published: 2019-08-23

摘要

茶叶生物化学是研究茶树生命化学的科学,主要在生物化学与分子水平上探讨茶树特别是新梢中特征性次级代谢产物的合成途径、结构与功能,以及在茶叶加工及贮藏过程中的转化规律,与茶叶品质形成的关系。近年来,茶叶生物化学主要侧重在与茶叶品质和健康功效密切相关的儿茶素、咖啡碱、茶氨酸、萜烯类香气物质等合成途径的研究,并在茶树基因组、特异性茶树种质资源代谢组、茶叶加工过程代谢谱、茶叶品质化学等领域开展了深入研究,取得了一些突破性进展。茶叶生物化学作为茶叶科学的基础,其研究成果为茶树栽培和育种、茶叶加工和深加工、茶叶贸易和茶文化提供了理论依据和方法手段。随着行业和科技的发展,茶叶生物化学研究的深入和拓展,在茶产业的可持续发展中发挥着愈来愈重要的作用。

本文引用格式

宛晓春 , 李大祥 , 张正竹 , 夏涛 , 凌铁军 , 陈琪 . 茶叶生物化学研究进展[J]. 茶叶科学, 2015 , 35(1) : 1 -10 . DOI: 10.13305/j.cnki.jts.2015.01.002

Abstract

Tea biochemistry is a subject of life science on Camellia Sinensis. It mainly focus on characteristic secondary metabolites of tea plants, especially those in the fresh tea shoots using biochemical and molecular techniques as research tools. Those metabolites include catechins, caffeine, theanine and volatile terpenes, which contribute greatly to tea quality and healthy effects. The major research fields of tea biochemistry involve the biosynthesis of secondary metabolites in tea plants, their transformation during tea processing and their effects on final tea quality and healthy function. Recently, there have several breakthroughs in the metabolites biosynthesis pathway, tea genome, specific tea germplasm metabolome, the processing metabolome, as well as the chemistry of tea quality. Since tea biochemistry is the fundamental in tea science, its achievements provide the theoretical basis and method approaches to tea cultivation and breeding, tea primary and further processing, tea trading and tea culture. With the development of tea industry and life science & technology, it is believed that the advancement of tea biochemistry will push forward tea industry to a high level at the sustainable development.

参考文献

[1] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908.
[2] Punyasiri P A N, Abeysinghe I S B, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways [J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30.
[3] Liu Y J, Gao L P, Liu L, et al. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis)[J]. The Journal of Biological Chemistry, 2012, 287(53): 44406-44417.
[4] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320.
[5] Zhao L, Gao L P, Wang H X, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis[J]. Functional & Integrative Genomics, 2013, 13(1): 75-98.
[6] Jiang X, Liu Y, Li W, et al. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis][J]. PLoS ONE, 2013, 8(4): e62315. doi:10.1371/journal.pone.0062315.
[7] Umar K M, Abdulkarim S M, Radu S, et al. Engineering the Production of Major Catechins by Escherichia coli Carrying Metabolite Genes of Camellia sinensis[J]. The scientific world journal, 2012. doi: 10.1100/2012/529031.
[8] Rani A, Singh K, Ahuja P S, et al. Molecular regulation of catechins biosynthesis in tea [Camellia Sinensis (L.) O. Kuntze][J]. Gene, 2012, 495(2): 205-210.
[9] Xiong L G, Li J, Li Y H, et al. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant physiology and biochemistry, 2013, 71: 132-143.
[10] Wang Y S, Gao L P, Shan Y, et al. Influence of shade on flavonoid biosynthesis in tea [Camellia sinensis (L.) O. Kuntze][J]. Scientia horticulturae, 2012, 141: 7-16.
[11] 卢忠尉, 蒋晓岚, 刘亚军, 等. 固相萃取结合高效液相制备茶树没食子酸衍生物[J]. 茶叶科学, 2012, 32(6): 494-499.
[12] Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956-957.
[13] Ashihara H, Sano H, Crozier A.Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69: 841-856.
[14] 金璐. 茶树咖啡碱生物合成途径研究及其分子调控[D]. 合肥: 安徽农业大学, 2012.
[15] 刘祥琦. 茶树咖啡碱合成途径中疑似N-甲基核苷水解酶的原核表达及活性验证[D]. 合肥: 安徽农业大学, 2013.
[16] 金基强, 姚明哲, 马春雷, 等. 合成茶树咖啡碱相关的N-甲基转移酶基因家族的克隆及序列分析[J]. 茶叶科学, 2014,34(2): 188-194.
[17] 魏艳丽. 茶树AMP脱氨酶基因的克隆及咖啡碱合成酶基因(TCS1)的cSNP分析[D]. 合肥: 安徽农业大学, 2013.
[18] Mohanpuria P, Kumar V, Ahuja P S, et al. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA[J]. Plant Mol Biol, 2011, 76: 523-534.
[19] Mohanpuria P, Kumar V, Ahuja P S, et al. Agrobacterium-mediated silencing of caffeine synthesis though root transformation in Camellia sinensis L[J]. Mol Biotechnol, 2011, 76: 235-243.
[20] 陈琪. 茶树体内茶氨酸合成酶的表达、蛋白结构分析及信号调控的研究[D]. 合肥: 安徽农业大学, 2011.
[21] Deng W W, Wang S, Chen Q, et al. Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings[J]. Plant Physiology and Biochemistry, 2012, 56: 35-40.
[22] 贺志荣, 项威, 徐燕, 等. 茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展[J]. 茶叶科学, 2012, 32(1): 1-8
[23] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53: 585-599.
[24] 陈亮, 赵丽萍. 茶树β-葡萄糖苷酶和β-樱草糖苷酶基因表达差异分析[J]. 园艺学报, 2009, 36(1): 87-92.
[25] Phukon M, Namdev R, Deka D, et al. Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant [Camellia sinensis (L) O. Kuntze][J]. Scientia Horticulturae, 2012, 148: 246-254.
[26] Ma C L, Chen L, Wang X C, et al. Differential expression analysis of different albescent stages of ‘Anji Baicha’ [(Camellia sinensis (L.) O. Kuntze)] using cDNA microarray[J]. Gene, 2012, 506: 202-206.
[27] Wu H L, Chen D, Li J X, et al. De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis)[J]. Plant Mol Biol Rep, 2013, 31: 524-538.
[28] 李娜娜, 陆建良, 郑新强, 等. 茶树品种福鼎大白茶和小雪芽叶片基因转录组研究[J]. 江苏农业学报, 2012, 28(5): 974-978.
[29] Shi C Y, Yang H, Wei C L, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12: 131. doi:10.1186/1471-2164-12-131.
[30] Sun J, Lei P D, Zhang Z Z, et al. Shoot basal ends as novel explants for in vitro plantlet regeneration in an elite clone of tea[J]. Journal of Horticultural Science & Biotechnology, 2012, 87(1): 71-76.
[31] 张凯, 丁阳平, 杨坚. 川渝地区野生大茶树儿茶素和咖啡碱含量比较分析[J]. 应用与环境生物学报, 2013, 19(2): 379-382.
[32] 谢吉林, 肖海军, 孙鲁云, 等. 滇西南茶区晒青毛茶中咖啡碱质量分数的分布规律研究[J]. 云南农业大学学报, 2013, 28(6): 851-856.
[33] 李俊, 郭晓关, 庞宏宇, 等. 贵州绿茶中咖啡碱和儿茶素含量分析[J]. 茶叶科学, 2012, 32(6): 480-484.
[34] Kilel E C, Faraj A k, Wanyoko J K, et al. Green tea from purple leaf coloured tea clones in Kenya-their quality characteristics[J]. Food Chemistry, 2013, 141(2): 769-775.
[35] Kerio L C, Wachira F N, Wanyoko J K, et al. Characterization of anthocyanins in Kenyan teas: extraction and identification[J]. Food Chemistry, 2012, 131(1): 31-38.
[36] Wang X C, Chen L, Ma C L, et al. Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze[J]. Journal of Food Composition and Analysis, 2010, 23: 9-14.
[37] 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012.
[38] 陈红霞. 普洱茶发酵过程的代谢组学研究[D]. 北京: 北京化工大学, 2013.
[39] Ku K M, Kim J Y, Park H J, et al. Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year[J]. J Agric Food Chem, 2010, 58: 345-352.
[40] 曹艳妮. 不同储存时间普洱茶的理化分析和抗氧化性研究[D]. 广州: 华南理工大学, 2011.
[41] Zhou Z H, Zhang Y J, Xu M, et al. Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea[J]. Journal of Agricultural and Food Chemistry, 2005, 53: 8614-8617.
[42] Wang W N, Zhang L, Wang S, et al. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity[J]. Food Chemistry, 2014, 152: 539-545.
[43] Luo Z M, Du H X, An M Q, et al. Fuzhuanins A and B: the B-ring fission lactones of flavan-3-ols from Fuzhuan brick-tea[J]. Journal of Agricultural and Food Chemistry, 2013, 61: 6982-6990.
[44] Zhu Y F, Chen J J, Ji X M, et al. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea[J]. Food Chemistry, 2015, 170: 110-117.
[45] 杨亦扬, 马立锋, 黎星辉, 等. 氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J]. 茶叶科学, 2013, 33(6): 491-499.
[46] Yang Z Y, Kobayashi E, Katsuno T, et al. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark[J]. Food Chem, 2012, 135, 2268-2276.
[47] Sang S M, Lambert J D, Ho C T, et al. The chemistry and biotransformation of tea constituents[J]. Pharmacological Research, 2011, 64: 87-99.
[48] 李大祥, 王华, 白蕊, 等. 茶红素化学及生物学活性研究进展[J]. 茶叶科学, 2013, 33(4): 327-335.
[49] Scharbert S, Hofmann T.Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. J Agric Food Chem, 2005, 53(13): 5377-5384.
[50] Xu W P, Song Q H, Li D X, et al. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition[J]. J Agric Food Chem, 2012, 60(28): 7064-7070.
[51] 李万春. 气质联用在不同茶叶品质鉴定中的应用[D]. 南京: 南京理工大学, 2012.
[52] Zhang L, Zeng Z D, Ye G Z, et al. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography mass spectrometry and liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(8): 804-816.
[53] 叶茂. 应用代谢组学策略研究普洱茶及其对人体代谢的影响[D]. 上海: 上海交通大学, 2008.
[54] Zhang Z Z, Wang S P, Wan X C, et al. Evaluation of sensory and composition properties in young tea shoots and their estimation by near infrared spectroscopy and partial least squares techniques[J]. Spectroscopy Europe, 2011, 23(4): 17-23.
[55] Wang S P, Zhang Z Z, Ning J M, et al. Back propagation artificial neural network model for prediction of the quality of tea shoots through selection of relevant near infrared spectral data via synergy interval partial least squares[J]. Analytical Letters, 2013, 46(1): 184-195.
[56] Gill G S, Kumar A, Agarwal R.Monitoring and grading of tea by computer vision - A review[J]. Journal of Food Engineering, 2011, 106: 13-19.
文章导航

/